PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/45262
GO6F A2

946 (43) International Publication Date: 3 August 2000 (03.08.00)

(21) Intervational Application Number: PCT/USON01234 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CR, CZ, DE, DK, DM, EE, ES, F,

(22) International Filing Date: 20 Januasy 2000 (20.01.00) GB, GD, GE, GH, GM, HR, HU, D, IL, IN, IS, JP, KE,

KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,

(30) Priority Data: SE, SG, SL, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ,

09/235,156 22 Janvary 1999 (22.01.99) US VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW,

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
Antonlo Road, Palo Alto, CA 94308 (US).

(72) Inventors: SUSSER, Joshus; 4150 17th Street #11, San
Francisco, CA 94114 (US). BUTLER, Mitchel, B.; 522 N.
Cascade Terrace, Sunnyvale, CA 94087 (US). STREICH,
Andy; 693 Beach Park Boulevard, Foster City, CA 94404
(Us).

(74) Agents: STEWART, David, L. ¢t al; McDermott, Will &
Emery, 600 13th Street, N.W., Washington, DC 20005-3096
{US).

$D, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU,
CY, DE, DK, ES, FI,
PT, SBE), OAPI patent (BF, BI, CF, CG, Cl, CM, GA, GN,
GW, ML, MR, NE, SN, TD, TG).

Published
Without International search report and to be republished
upon receipt of that report.

(54) Title: TECHNIQUBS FOR PERMITTING ACCESS ACROSS A CONTEXT BARRIER IN A SMALL FOOTPRINT DEVICE

USING GLOBAL DATA STRUCTURES
(5T) Abstract

A small footprint device can securely run multiple programs from unrelated vendors by the Inclusion of 8 context basier isolating the
execution of the programs, The context basrier performs sccurity checks to see that principal and object are within the same namespace or
memory space of to se¢ that 8 requested action ig suthorized for an object to be operated upon. Each program or set of programs runs in a
separate context. Access from one program to ancther program across the context barer can be achicved under controfled circumstances

by using a global data structure.

E2SQ009N28R03BERREBBRRESEE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to Identify States party to the PCT on the front pages of pamphilats publishing International applications under the PCT.

Alsals
Armenia
Austria
Aestralis
Azetonijen
Bugeis end Heszegovina
Barbados
Bolglum
Buwidng Faso
Bulgwria

Benin

Braail

Belarm

Carads

Central Africen Republic
Congo
Swiczerland
Cive d'bvelre
Cemeraon
Chira

Cuba

Craeh Republic
Qerempny
Deneark
Batonia

ES

L4

FR
GA
GB
GE
[+1:]

(2]
=z

ERFREF JRARRAGERIR

Finland

Regublic of Korea
Repablic of Korea
Kazzbstan

Saiat Locis
Lischrenstein

Sei Lanks

i3
LT
LU
LY
MC
MD
MG
MK

ML

H

BRBEZ3IRSEEIRES

Lenothn
Lithusnta
Lenboury
Latvia

Manaco

Republic of Moldove
Mauiagescar

The former Yugostay
Reguablic of Macedonin
Mall

Mangolia

Masritania

Malzwi

Mexloo

Higer

Netherlands

Norwsy

New Zenlind

Polend

Postugss

Roounis

Rugsien Federetion
Sudan

Swedea

Singspoeze

81
14

$53NEEFdd3CddRE

Skrvenin
Stovakia
Senegal
Swazllxnd
Chsd

Tago
Twjiideen
Turkmenistan

Turkey :
Trinided #nd Tobago
Ukraine

Uganda
United Stazes of America
Urhsek

Viet Nera

Yugostavia

Danbabere

10

15

20

25

WO 00/45262 . PCT/US00/01234

1

TECHNIQUES FOR PERMITTING ACCESS ACROSS A
CONTEXT BARRIER IN A SMALL FOOTPRINT DEVICE
USING GLOBAL DATA STRUCTURES

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to U.S. Patent Application Serial Number 08/839,621
filed April 15, 1997, entitled "VIRTUAL MACHINE WITH SECURELY
DISTRIBUTED BYTE CODE VERIFICATION", in the name of inventors Moshe
Levy and Judy Schwabe (Docket No. 50253-221/P3263), which application is
incorporated herein by reference in its entirety. '

This application is related to U.S. Patent Application Serial Number 09/235,158
filed January 22, 1999, entitled "TECHNIQUES FOR IMPLEMENTING SECURITY
ON A SMALL FOOTPRINT DEVICE USING A CONTEXT BARRIER", in the name
of inventors Joshua Susser, Mitchel B. Butler, and Andy Streich, (Docket No. 50253-
216/P3708), which application is incorporated herein by reference in its entirety.

This applicatiop is related to U.S. Patent Application Serial Number 09/235,157
filed January 22, 1999, entitled "TECHNIQUES FOR PERMITTING ACCESS
ACROSS A CONTEXT BARRIER ON A SMALL FOOTPRINT DEVICE USING
AN ENTRY POINT OBJECT", in the name of inventors Joshua Susser, Mitchel B.
Butler, and Andy Streich, (Docket No. 50253-217/P3709), which application is
incorporated herein by reference in its entirety. ‘

This application is related to U.S. Patent Application Serial Number 09/235,155
filed January 22, 1999, entitled "TECHNIQUES FOR PERMITTING ACCESS
ACROSS A CONTEXT BARRIER ON A SMALL FOOTPRINT DEVICE USING
RUN TIME ENVIRONMENT PRIVILEGES", in the name of inventors Joshua Susser,
Mitchel B. Butler, and Andy Streich, (Docket No. 50253-218/P3710), which application
is incorporated herein by reference in its entirety. ' ,

This application is related to U.S. Patent Applicaﬁ'on Serial Number 09/235,159
filed January 22, 1999, entitled "TECHNIQUES FOR PERMTTING ACCESS
ACROSS A CONTEXT BARRIER IN A SMALL FOOTPRINT USING SHARED

10

15

20

25

WO 00/45262 . PCT/US00/01234

2

OBJECT INTERFACES", in the name of inventors Joshua Susser, Mitchel B. Butler,
and Andy Streich, (Docket No. 50253-220/P3712), which application is incorporated

herein by reference in its enfirety.

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to computer security and more particularly to techmques

for implementing a security on small footprint devices, such as smart cards.

Description of Related Art
A number of object oriented programming languages are well known in the art.

Examples of these include the C-++ language and the Smalltalk language.
Anather such object oriented language is the JAVA™ language. This language
is described in the book Java™ Language Specification, by James Gosling et al. and

published by Addison-Wesley. This work is incorporated hercin by reference in its
entirety. The JAVA™ language is particularly well suited to run on a Java™ Virtual
Machine. Such a machine is described in the book Java™ Virtual Machine
Specification, by Tim‘Lindholm and Frank Yellin which is also published by Addison-

Wesley and which is also incorporated herein by reference in its entirety.

A number of small footprint devices are also well known in the art. These
include smart cards, cellular telephones, and various other small or miniature devices.

Smart cards are similar in size and shape to a credit card but contain, typically,
data processing capabilities within the card (e.g. a processor or logic performing
processing functions) and a set of contacts through which programs, data and other
communications with the smart card may be achieved. Typically, the set of contacts
includes a power source connection and a return as well as a clock input, a reset input
and 2 data port through which data communications can be achieved.

Information can be written to a smart card and retrieved from a smart card using
a card acceptance device. A card acceptance device is typically a peripheral attached to
a host computer and contains a card port, such as a slot, in to which a smart card can be

inserted. Once inserted, contacts or brushes from a connector press against the surface

10

15

20

25

30

WQ 60/45262 PCT/USH0/01234

3

connection area on the smart card to provide power and to permit communications with
the proc;&sor and memory typically found on a smart card.

Smart cards and card acceptance devices (CADs) are the subject of extensive
standardization efforts, e.g. ISO 7816.

The use of firewalls to separate authorized from unauthorized users is well
known in the network environment. For example, such a firewall is disclosed in U.S.
Patent Application Serial No. 09/203,719, filed December 1, 1998 and entitled
"AUTHENTICATED FIREWALL TUNNELLING FRAMEWORK" in the name of
inventor David Brownell (Docket No. 50435-023/P2789/TJC), which application is
incorporated herein by reference in its entirety.

A subset of the full Java™ platform capabilities has been defined for small
footprint devices, such as smart cards. This subset is called the Java Card™ platform,
The uses of the Java Card™ platform are described in the followihg publications.

JAVA CARD™ 2.0 -- LANGUAGE SUBSET AND VIRTUAL MACHINE
SPECIFICATION;

JAVA CARD™ 2.1 -- APPLICATION PROGRAMMING INTERFACES;

JAVA CARD™ 2.0 -- PROGRAMMING CONCEPTS;

JAVA CARD™ APPLET DEVELOPER'S GUIDE.

These publications are incorporated herein by reference in their entirety.

A working draft of ISO 7816 -- Part 11 has been circulated for comment. That
draft specifies standards for permitting separate execution contexts to operate on a smart
card. A copy of that working draft is hereby incorporated by reference in its entirety.

The notion of an execution context is well known in computer science.
Generally speaking, the use of multiple execution contexts in a computing environment
provides a way to separate or isolate different program modules or processes from one
another, so that each can operate without undue interference from the others.
Interactions --if any-- between different contexts are deliberate rather than accidental,
and are carefully controlled so as to preserve the integrity of each context. An example
of multiple contexts is seen in larger hardware devices, such as mainframes, where a
plurality of virtual machines may be defined, each such virtual machine having its own

execution context. Another example is seen in U.S. Patent No. 5,802,519 in the name of

10

15

20

25

30

WO 00/45262 PCT/US00/08234

4

inventor De Jong, which describes the use of multiple execution contexts on a smart
card. It will be appreciated by those of skill in the art that a computing environment
which provides multiple execution contexts also needs to provide a mechanism for
associating any given executing code with its corresponding context.

Also well known is the notion of a cumrent context. Certain computing
environments that support multiple contexts will, at any given time, treat one context in
particular as an active focus of computation. The context can be referred to as the
“eurrent context.” When the current context changes, so that some other context
becomes the current context, a "context switch” is said to occur. As will be appreciated
by those of skill in the art, these computing environments provide mechanisms for
keeping track of which context is the current one and for facilitating context switching.

In the prior art, in the world of small footprint devices, and particularly in the
world of smart cards, there was no inter-operation between contexts operating on the
small footprint devices. Each context operated totally separately and could operate or
malfunction within its context space without affecting other applications or processes in
a different context. -

One layer of security protection utilized by the Java™ platform is commonly
referred to as a sandbox model. Untrusted code is placed into a “"sandbox" where it can
“play" safely without doing any damage to the "real world" or full Java™ environment,
In such an environment, Java™ applets don't communicate, but each has its own name
space.

Some smart card operating systems don't permit execution contexts to
communicate directly, but do permit communications through an operating system, or
through a server.

vThe Problems

A number of problems exist when trying to place computer programs and other
information on a small footprint device. One of the compelling problems is the
existence of very limited memory space. This requires often extraordinary efforts to
provide needed functionality within the memory space. '

A second problem assaciated with small footprint devices is the fact that

different small footprint device manufacturers can utilize different operating systems.

10

15

20

25

30

WO 00/45262 .) PCT/US00/01234

5

As a result, applications developed for one operating system are not necessarily portable
to small footprint devices manufactured by a different manufacturer.
If programs from more than one source of programs (manufacturer or vendor)

are to be applied to a single small footprint device, security becomes a factor as one

attempts to avoid corruption of existing programs and data when a new program is
loaded on to the small footprint device. The same concern exists when one wishes to
prevent a hacker or a malicious person from accessing programs and data.

It is clear that small footprint devices such as smart cards don't have the
resources necessary to implement separate virtual machines. Nevertheless, it is
desirable to maintain strict security between separate execution contexts,

In the past, security was provided by loading only applications from the same
source or from a known trusted source onto a smart card or other small footprint device.

Accordingly, it would be desirable to allow object-oriented interaction bétween
selected execution contexts only in safe ways via fast efficient peer to peer
communications which do not impose undue burdens on the programmer but facilitate
dynamic loading of applets written at different times by untrusted sources.

SUMMARY OF THE INVENTION

The invention is directed to providing a context barrier (sometimes referred to as

a firewall) for providing separation and isolation of one context from another and to
provide controlled access across the barrier when that is needed.

In accordance with the invention, two execution contexts, e.g. each containing
one or more applets, running in the same logical (i.e., virtual or real) machine, protected
from each other, can share information in a controlled, secure way, using language
mechanisms, such as object-oriented language mechanisms. Security can be, for
example, object by object. Thus, a method in a first execution context can access a first
object A in a second execution context, but not a second object B in the second
execution context on a selective basis.

In accordance with one exemplary embodiment, an enhanced Java™ Virtual
Machine (VM) provides certain run-time checks of attempted access across execution
contexts in the VM. Checks can be automatic by the VM or coded by the programmer

10

15

20

25

30

WO 00/45262 PCT/US00/01234

6

with support from the VM. This can be done using language-level communication
mechanisms. In this way, one can express object access across execution contexts inthe
same way as other object accesses using the language are made. These run-time checks
provide a second dimension of defense/security beyond that which the Java™ language
and platform already provide.

_ These mechanisms provide protection against, e.g., security holes due to
programming bugs (such as declaring a datum "public” (global) when it shouldn't be
accessible to all contexts). They also allow fine-grain control of sharing (such as
selection of objects to share and applets to share to).

The invention is also directed to computer program products and carrier waves
related to the other aspects of the invention. .

The foregoing and other features, aspects and advantages of the present
invention will become more apparent from the following detailed description of the

_present invention when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
The features and advantages of the present invention will be apparent from the

following description in which:

Figure 1 is an illustration of a computer equipped with a card acceptance device
and of a smart card for use with the card acceptance device. »

Figure 2 is an illustration of a computer equipped with a card acceptance device
connected to a network.

Figure 3 is an exemplary hardware architecture of a small footprint device, such
as a smart card, of the prior art. |

Figure 4 illustrates objects being accessed by principals as done in the prior art.

Figure § is an exemplary security model which can be used in explaining the
various embodiments of the invention.

Figure 6 is a block diagram showing separation of execution contexts by a
firewall or context barrier in accordance with one aspect of the invention.

Figure 7 is a representation of a software architecture useful in carrying out the

invention.

10

15

20

25

30

WO 00/45262 PCT/US00/01234

7

Figure 8 is a flow chart of a security enforcement process implementing a
firewall in accordance with one aspect of the invention.

Figure 9 is a block diagram showing object access across a firewall in
accerdance with one aspect of the invention.

Figure 10 is a block diagram showing cascaded object access across a firewall.

Figure 11 is a flow chart of a process for permitting access by a principal in one
context across a firewall into another context.

Figure 12 is a block diagram illustrating the use of an entry point object to
permit access across a firewall. ,

Figure 13 is a block diagram illustrating the use of a global data structure such
as an array for access across a firewall.

Figure 14 is a block diagram illustrating the us¢ of a supercontext to permit
access across a firewall. '

Figure 15 is a block diagram illustrating the use of shareable interface objects to

permit access across a firewall.
Figure 16 is a flow chart of a security enforcement process permitting access

across a firewall.

Figure 17 is the flow chart of Figure 16 showing details of block 1620.

Figure 18 is a flow chart showing an exemplary implementation of block 1629
of Figure 17. ' :

NOTATIONS AND NOMENCLATURE
The detailed descriptions which follow may be presented in terms of program

procedures executed on a computer or network of computers. These procedural
descriptions and representations are the means used by those skilled in the art to most
effectively convey the substance of their work to others skilled in the art.

A procedure is here, and generally, conceived to be a self-consistent sequence of
steps leading to a desired result. These steps are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, transferred, combined, compared,

and otherwise manipulated. It proves convenient at times, principally for reasons of

10

15

20

25

WO 00/45262 PCT/US00/01234

8

common usage, to refer to these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like. It should be noted, however, that all of these and similar
terms are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities.

Further, the manipulations performed are often referred to in terms, such as
adding or comparing, which are commonly associated with mental operations performed
by a human operator. No such capability of a human operator is necessary, or desirable
in most cases, in any of the operations described herein which form part of the present
invention; the operations are machine operations. Useful machines for performing the
operation of the present invention include general purpose digital computers or other
computational devices. ‘

The present invention also relates to apparatus for performing these operations.
This apparatus may be specially constructed for the required purpose or it may comprise
a gencral purpose computer as selectively activated or reconfigured by a computer
program stored in the computer. The procedures presented herein are not inherently
related to a particular computer or other apparatus. Various general purpose machines
may be used with programs written in accordance with the teachings herein, or it may

prove more convenient to construct more specialized apparatus to perform the required

method steps. The required structure for a variety of these machines will: appear from

the description given.

DETAILED DESCRIPTION
Attached as an Appendix to this specification is an unpublished draft of a
document entitled JAVA CARD RUNTIME ENVIRONMENT 2.1 SPECIFICATION.
This draft document, which provides further detailed description of specific

embodiments of the invention, is incorporated in its entirety as an integral part of the
present specification.

Although the inventive techniques are described hereinafter in the context of a
smart card example, the example is merely illustrative and shouldn't limit the scope of

the invention.

10

15

20

25

30

WO 00/45262 . ‘ PCT/US00/01234

9

Figure 1 is an illustration of a computer 120 equipped with a card acceptance
device 110 and a smart card 100 for use with the card acceptance device 110. In
operation, the smart card 100 is inserted into card acceptance device 110 and power and
data connections applied through a set of contacts 105 accessible at the surface of the
smart card 100. When the card is inserted, mating contacts from the card acceptance
device 110 interconnect with the surface contacts 105 to power-up the card and pénnit
communications with the onboard processor and memory storage.

Figure 2 is an illustration of a computer equipped with a card acceptance device,

- such as 120 in Figure 1, connected to a network 200. Also connected to a nequrk are a

plurality of other computing devices, such as server 210. It is possible to load data and
software onto a smart card over the network 200 using card equipped device 120.
Downloads of this nature can include applets or other programs to be loaded onto a
smart card as well as digital cash and other information used in accordance with a
variety of electronic commerce and other applications. The instructions and data used to
control processing elements of the card acceptance device and of the smart card may be
stored in volatile or non-volatile memory or may be received directly over a
commmunications link, ¢.g., as a camier wave containing the instructions and/or data.
Further, for example, the network canbe a LAN or a WA'N such as the Intemet or other
network,

Figure 3 is an exemplary hardware architecture of a small footprint device, such
as a smart card, of the prior art. As shown in Figure 3, a processor 300 interconmects
with primary storage 310 which may include read only memory 315 and/or random
access memory 316. The processor also connects with a secondary storage 320 such as
EEPROM and with an input/output 330, such as a serial port. One can see the small
footprint devices of this nature can be very simple,

Figure 4 illustrates objects being accessed by principals as done in the prior art.
As shown in Figure 4, physical device 400, such as the small footprint device may have
contained within it one or more processing machines (virtual or physical)- which are
running an execution context 420. The execution context may be, for example, a
context associated with a particular applet. One or more principals 430 {e.g., applets or

applications) in the execution context may seck to access other objects within the

10

15

20

25

30

WO 60/45262) PCT/US00/01234

10

execution context. As long as the access occurs within the execution context, the
accesses will be permitted and everything will function normally.

Figure 5 is an exemplary security model which can be used in explaining the
various embodiments of the invention. It is just one of many models which might be
utilized but is a convenient model for this purpose. In this rhodcl, a principal
(sometimes called entity) 500 proposes to take an action 510 on an object, such as object
520. Security checks may be imposed on the principal, on the object, and/or on the
action proposed to be taken.

In Figure 5, two types of objects are shown on which action may be taken by a
principal. These include data objects, (e.g. datal and data2 (520, 520") and entity 530.
A principal may operate or attempt to operate on any of these objects.

While data is passive, an entity 530 is active. The diagram line from Principal to
an active entity is also labeled "action," but this could be a more sophisﬁcéted and
arbitrarily complex action, such as making a function or method call or sending a
message as compared with action on a data object. As with data,}a security check
enforced by the operating system may use the identity of the principal, the identity of the
entity, and/or the type of action. Furthermore, the entity, being active, can perform its
own additional security checks. These can be as arbitrarily complex as one desires, and
can make use of the identity of the Principal, the identity of the entity itself, the action,
and/or any other information that is available.

In an object-oriented system (such as the Java Card™ platform) "objects” are
typically a combination of data and entity. When a Principal tries to access a field of an
object, this is a data access--a fairly simple action protected by a fairly simple security
check. When a Principal tries to access a method of an object, this is an entity access,
which can be arbitrarily complex both in action and in security check.

Figure 6 is a block diagram showing separation of execution contexts by a
firewall or context barrier in accordance with one aspect of the invention. The physical
device 400 and the machine 410 correspond to the same items shown in Figure 4. An
execution context 420 shows one principal 430 attempting to access object 440 within
the context. This access would normally succeed. However, execution context 420 also

shows a principal 630 attempting to access object 640 of execution context 620, across 2

10

15

20

25

30

WO 00/45262 PCT/USO0/01234

11

context barrier 600, Normally, this access would be prohibited as indicated by the X
636 where the action 635 crosses the context barrier 600.

Figure 7 is a representation of a software architecture useful in carrying out the
invention. This software architecture is shown as a run time eqvironment 700. An
operating system 710 for the small footprint device is commonly used. A virtual
machine 720, in an exemplary embodiment of the invention, is implemented over the
operating system. The virtual machine could be a Java Card™ virtual machine or other
virtual machine. The capabilities of a standard virtual machine can be expanded to
provide the additional functionality described herein or the functionality can be provided
as separate modules. The virtual machine 720 may include an interpreter or native
implementation 730 which provides access to a nun time system 740. The run time
system includes object system 750 for managing the objects of an object orienied
implementation. Three contexts, 760, 770 and 780, are shown. Each context is
separated from the other by a context barrier (sometimes referred to as a firewall)
between the execution contexts. Context 760 is, in one specific embodiment, a
supercontext. That is, context 760 has privileges and capabilities not available to
subordinate contexts 770 and 780, potentially including privileges to create eniry point
objects or global data structures, and to access objects in subordinate contexts 770 and
780.

Every object is associated with one particular context. That context is said to
own each object that is associated with it. The runtime system 740 provides a means for
uniquely identifying contexts, and a means for specifying and identifying the currently
executing context. The object system 750 provides a mechanism for associating objects
with their owning contexts.

For example, the runtime 740 can identify contexts with a unique name, and
correspondingly the object system 750 can associate objects with that context by
recording the context's name in the object's header. Information in the object's header
cannot be accessed by programs written in the object-oriented language, but is only
available to the virfual machine 720 itself. Alternately, the runtime system 746 can
identify contexts by dividing the memory space into separate regions, each for a
particular context, and correspondingly the object system 750 can associate objects with

10

15

20

25

30

WO 00/45262 PCT/AUS00/01234

12

that context by allocating the object's storage in that context's memory space.

Figure 8 is a flow chart of a security enforcement process implementing a
context barrier in accordance with one aspect of the invention. When a principal
invokes an action on an object (800) a check is made to determine whether the object is
within the context of the principal (810). If it is not, the action is‘ disallowed (840).
Otherwise, the action is permitted (830). This is the simplest form of context barrier or
firewall. In one specific embodiment the action is disallowed (840) by throwing a
security exception if the object is outside of the namespace or the memory space of the
context requesting access. o

Figure 9 is a block diagram showing object access across a firewall in
accordance with one aspect of the invention. Figure 9 is substaﬁtially similar to Figure
6. However, Figure 9 also shows principal 900 seeking to access object 910 in order to
perform action 905 on the object 910. According to the invention, rather than having
the access blocked by the firewall 600, in the way that action 635 is blocked, action 905
is permitted to occur across the firewall through access point 920 so that principal 900
can perform action 905 on object 910 notwithstanding the fact that the principal and the
object are in different execution contexts. The mechanisms behind access point 920 are
described below with reference to Figures 12-18. Note that access point 920 can
coexist with obstructed accesses such as X 636. Thus access point 920 provides fine-
grain control of sharing (object by object security) across context barrier 600.

When object access 900 is initiated, the current context setting is context 420. If
the object 910 is a data object, the action 905 is a simple data access, and no code is
executed in the second context 620. If the object 910 is an entity object, and the action
905 results in that object's code being executed, that code is executed in the second
context 620. To execute the code of object 910 in the correct context 620, the virtual
machine 410 performs a context switch. The context switch changes the current context
setting to be context 620, and the previous value of the current context setting ig stored
so that it can be restored later. From that point on code will execute in the new current
context. When the action 905 completes, control is returned to the point following
access 900. During the retum, the virtual machine 410 must restore the value of the

current context setting to its previous value.

10

15

20

25

30

WO 00/45262 . PCT/US00/01234

13

Figure 10 is a block diagram showing cascaded oﬁject accesses across a
firewall. Figure 10 shows three execution contexts, 1000, 1610 and 1020. Principal
1030 in executioﬁ context 1 seeks to invoke an action 1035 on object 1050 in execution
context 2 and does so through access point 1070 in context barrier 600. Object 1050 in
execution context 2 has an object access 1040 which seeks to perform' an action 1045 on
the object 1060 in execution context 3. It achieves this by using access point 1080 in
context barrier 600" separating execution contexts 2 and 3. Object 1050 in execution
context 2 also has another object access 1090 which invokes an action 1095 on an object
1099 in the same execution context, that is, in execution context 2. Both actions 1035
and 1045 result in context switches as described in the explanation of Figure 9. But as
action 1095 does not cross the context barrier, a context switch is not required for its
execution, and therefore does not occur.

Figure 11 is a flow chart of a process for permitting access by a principal in one
context across a firewall into another context. There are essentially three steps to this
process. In execution context 2, an object to be accessed is created and designated as
shared (1100). In exécution context 1, the principal obtains a reference to the object in
execution context 2 (1110). The principal in execution context 1 then invokes an action
upon the object designated as shared in context 2 (1120).

With respect to identifying or designating a created object as shareable as
discussed in item 1100 of Figure 11, this can be done, in accordance with a specific
embodiment of the invention, by including a shareable attribute in the header of an
object's representation. Information in an object's header cannot be accessed by
programs written in the object-oriented language, but is only available to the VM itself,

Obtaining a reference to an object in another context is a special case of
accessing an object in another context. A mechanism that provides access to an object
in another context can make other objects available also. For instance, invoking a
method on an object in another context may return a reference to a second object in a
different context. An additional mechanism is required to allow an initial reference to
an object in a different context to be obtained. In a specific embodiment, references to
certain well-known entry point objects can be obtained using a public API. Once the

initial reference to an object in a different context is obtained, further references can be

10

15

20

25

30

WO 00/45262 PCT/US00/01234

14

obtained from that object, and so on.

There are four general approaches to obtaining information across a context
barrier in accordance with the invention. These approaches can be utilized individually
or in combination in order to access an object across & context barrier or to obtain a
reference of an object to be accessed across a context barrier (1110). These approaches
are described in Figures 12-18.

Figure 12 is a block diagram illustrating the use of entry point objects to permit
access across a context barrier. As shown in Figure 12, some object 1200 in context
770 (context 1) desires access to information in supercontext 760. In thé specific
embodiment, a supercontext 760 contains at least one entry point object 1210. The
entry point object 1210 can be published as part of a public API, or can be made
available indirectly through a published API (e.g., in accordance with the mechanisms
described previously with reference to Figure 11), so that each context subordinate to
the supercontext may communicate with the entry point object of the supercontext. (It
will be appreciated that in other embodiments, entry point objects may be housed by a
context other than the supercontext.)

Figure 13 is a block diagram illustrating the use of global data structures to
permit access across a firewall. In this approach, supercontext 760 creates a global data
structure such as a global array. In the specific embodiment supercontext 760 1s the
only context permitted to create such a global data structure. (It will be appreciated that
in other embodiments, global data may be housed by a context other than the
supercontext.) By virtue of its global status, each of the contexts 770 and 780 may read
and write to the global data structure. Thus, information written into the global data
structure by one context can be read by another context. For example, this mechanism
can be used to pass binary data or references to objects between contexts.

Figure 14 is a block diagram illustrating the use of supercontext privileges to
permit access across a context barrier. In Figure 14, an object in supercontext 760 secks
access to context 780 across the context barrier separating the two. Supercontext 760
can invoke any of the methods of context 780 and can access any of the data contained

within context 780, by virtue of the privileges associated with the supercontext.

10

15

20

25

30

WO 00/45262 PCTAUS00/01234

15

Figure 15 is a block diagram illustrating the use of shareable interface objects to
permit access across a firewall. A shareable interface defines a set of shareable interface
methods. A shareable interface object is an object that implements at least the set of
methods defined in a shareable interface. In Figure 15, object 1210 in context 2 (780)
is a shareable interface object. An object access 1200 in another context 770 can invoke
any of the shareable interface methods on the object 1210 if the principal of the object
access 1200 is authorized to do so by the object 1210 itself. This authorization is further
discussed with reference to Figure 18 below.

It will be appreciated that a virtual machine consistent with the invention
provides functionality beyond that of earlier virtual machines, such as the virtual
machine described in the Java™ Virtual Machine Specification. In particular,

consistently with the invention, the virtual machine provides functionality to implement

or to facilitate a security enforcement process that permits access across a firewall. This
process is described next with reference to Figures 16-18. Note that it is applicable to
any approach for providing access across the firewall, including but not limited to the
four approaches described with reference to Figures 12-15 above.

Figure 16 is a flow chart of a security enforcement process permitting access
across a firewall. When a principal attempts to invoke action on an object 1600, a check
is made to determine if the object is within the context of the principal (1610). If it 1s,
(161 O-Y), the action is permitted (1 630). Ifit is not, (1610-N), a check is made to see if
the action by the principal is permitted on the object (1620). Ifit is, (1620~Y), the action
is permitted (1630). If it is not, (1620-N), the action is disallowed. In the specific
embodiment a security exception is thrown (1640).

Figure 17 is the flow chart of Figure 16 showing further details of block 1620.
If the object is not within the context of the principal (1610-N), a plurality of tests, 1621,
1622, 1623... 1629 are undertaken to see if the action by the principal is permitted on the
object. These tests can be done by the virtual machine alone or by the virtual machine
plus the object, in a virtual machine object oriented implementation. If any of the tests
results in a pass, the action is permitted (1630). However, if all tests result ina negative
determination (162X--No), the action will be disallowed. In a specific embodiment, 2
security exception will be thrown (1640). These tests relate to thé permitted access

10

15

20

25

30

WO 00/45262) PCT/US00/01234

16

discussed in conjunction with Figures 12-15.

Figure 18 is a flow chart showing an exemplary implementation of block 1629
of Figure 17 for use with access method described in Figure 15. In a test, such as 829
or 1629, a virtual machine checks if the object is a shared object 1810. If it is not (1810-
No), the test will fail. However, if it is (1816-Yes), the virtual machine will invoke the
method A on object O (1820). If the method A on object O determines that the prinéipai
is authorized (1830), the test will be passed (1840) and access permitted. Otherwise, the
test will fail (1850). This allows the authorization text to be programmed into the code
of the object itseif.

Although the invention has been illustrated with respect to a smart card
implementation, the invention applies to other devices with a small footprint, not just to
smart cards. Devices with a small footprint are generally considered to be those that are
restricted or limited in memory or in computing power or speed. Such small footprint
devices may include boundary scan devices, field programmable devices, pagers and
cellular phones among many others.

In general, small footprint devices are resource constrained computational
devices and systems where secure interoperation of execution contexts is a concern.
Such small devices impose constraints on the implementation of security rmeasures
because of their limited resources. Because of resource constraints, in a virtual machine
implementation, a single virtual or physical machine must be used as opposed to
multiple virtual machines. |

The invention may alsa be applied to devices with larger foatprints where the
characteristics of the invention may prove beneficial. For example, the invention may
prove advantageous when using servlets if there is object sharing between them. Even
some desktop systems may profitably utilize the techniques of the invention.

While the Java™ language and platform are suitable for the invention, any
languége or platform having certain characteristics would be well suited for
implementing the invention. These characteristics include type safety, pointer safety,
object-oriented, dynamically linked, and virtual-machine based. Not all of these
charactenistics need to be present in a particular implementation. In some embodiments,

languages or platforms lacking one or more of these characteristics may be utilized. A

WO 00/45262 PCT/USO0/01234

i7

"virtual machine" could be implemented either in bits (virtual machix;e) or in silicon
(real/physical machines).
Although the invention has been illustrated showing object by object security,

other approaches, such as class by class security could be utilized.

| Although the present invention has been described and illustrated in detail, it is
clearly understood that the same is by way of illustration and example only and is not to
be taken by way of limitation, the spirit and scope of the present invention being limited
only by the terms of the appended claims and their equivalents.

WO 0045262 PCT/USOD/A1234

18

Java ™ Card ™ Runtime Environment {J CRE)
2.1 Specification

Draft 2

Sun Microrystems, nc.
801 S2n Antonio Rosd
Palo Alw, CA 94303 USA
650 960-{300

Draft 3, Desember 34, 1996

SUBSTITUTE SHEET (RULE 265)

WO 00/45262) PCTUS00/01234
19 !

Copyright © 1998 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
Alb rights reserved. Copyright (n this document is owned by Sun Microsystems, Inc.

Sun Micrasystems, Inc, (SUN) bereby grants to you at no charge s nonexclusive, nonvansfereble, worldwide, limited license
{without the right to sublicense) under SUN's intellectual property rights that are essential to practics the Jova ™ Card ™
Runtime Environment (JCRE) 2.| Specification (“Specification”) to use the Specification for inwrnal evaluation purposes anly.
Other than this limited license, you acquire no right, title, or interest in or {0 the Specification and you shall have no right to use
the Specification for productive or commercial use,

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2X6/87) and FAR 52.227.
19(6/87), or DFAR 252.227-701 5{0)X6/95) and DFAR 227.7202-1(s}.

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON- INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY

DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERIVATIVES,

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBesns, JDK, Java, Javs Card, HotJava, Hotheva Views, Visusl Java, Solaris,-
NEO, Joe, Netrs, NFS, ONC, ONC+, OpenWindows, PC-NFS, Embeddedlavs, Parsonallava, SNM, SunNet Manager, Solaris
sunturst design, Salstion, SunCare, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, Too{Talk, Ultrs,
Ulrecomputing, Ultreserver, Where The Network Is Going, Sun WaerkShop, XView, Jave WorkShop, the Java Coffee Cup logo,
and Visua! Jova sre trademarks or registered trademarky of Sun Microsysiems, inc. in the United States and other countrics.

THIS PUBLICATION IS PROVIDED "AS IS* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS, CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR

CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

SUBSTITUTE SHEET (RULE 25)

WO 00/45262 PCT/US00/08234

20
Java ™ Card ™ Runtirae Environment (JCRE) 2.1 Specification

Contents
Preface i
1. Introduction 1.1
2. Lifetime of the Java Card Virtual Machine » i-l
3. Java Card Applet Lifetime 3-3
31 The Method Linstall 3-1
32 The Metwd gelece........ 32
33 The Method process ... e s o 3.2
34 The Method dasslace......, 3-3-
3.5 Power Loss and Reset 3.3
4. Trenslent Objects 4.1
4.1 Events That Clesr Transient Objects 42
5. Selection : 51
5.0 The Default Applet.. 51
52 SELECT Command Frocessing 5.2
53 Noo-SELECT Command Processing 8.3
6. Applet iselation and Object Sharing. &1
6.1 Applet Firewall 6-1
6.1.1 Contexts snd Context Switching 61

Copyright @ Decamber 14, 1898 Sun Microsystems, inc.]

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

21

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

[

6.1.2 Objecs Oumership 62
6.1.3 Object Acoess 6-2
6.1.4 Firewall Protection 62
6.1.5 Statlc Fields and Methods 63
6.2 Object Access Acrass Contexts 63
6.2.1 JCRE Entry Point Objects &4
62.2 Global Arreys &4
6.2.3 JCRE Privileges 6-5
6.2.4 Shareable Intecfaces 6-5
‘6.2.5 Determiging the Previous Context &6
62.6 Shareable Interface Details 61
6.2.7 Obtsining Sharcable Interface Objects 6-7
6.2.8 Object Access Behavior 6-8
6.3 Tranzient Cbjocts and Applet contexts (RPN . b
7. ‘Tnmcﬂom snd Atowmicity -1
7.1 Atomicity 71
7.2. Transsctions 7-i
73 Trensaction Duntion ... 7.2
7.4 Nested Transactions 7-2
1.5 Tear or Reset Transaction Failure W7-2
7.6 Aborting & Tranmaction 7-3
7.6.1 Progrummatic Abortion 7-3
7.62 Aborton by the JCRE 1.3
7.63 Cloanup Respousibilitics of the JCRE 73
77 Transieat Objects 743
78 Cooumit Capasity 73
8. APl Topics -1
8! The APDUClass 8-1
8.1.1 TwD specifics for cutgoing date tranafers B-1

Capyright © Decamibar 14, 1988 Sun Microsystems, Ing,

SUBSTITUTE SHEET (RULE 26)

PCT/USG0/01234

WO 00/45262

22

Iava ™ Card ™ Runtime Enviromment (JCRE) 2.1 Specification

812 Te=1 specifics for owgoing data transfers 8-3

8.2 . The security and erypto packeges B4

83 JCSystem Class.. 8-§

9. Virtual Machine Topics 9-1
9.1 Resource Failures ..o, S-1

10. Applet fnstaller 16-1
10.1 The Installer. " 101
10.1.1 Installer implementation 10-1

10.1.2 installer AID - . 10-2
10.1.3 insialler APDUs 10-:2,

10.1.4 Instalier Behavior 10-2

10.1.5 Instoller Privileges 10-3

10.2 The Newly Installed Applet 10-3
10.2.1 Installetion Perameters 103

11, API Constants

Copyight & Deoember 14, 1998 Sun Microgyatoms, inc.

SUBSTITUTE SHEET (RULE 26)

PCT/US00/01234

v

WO 00/45262 PCT/US00/01234

23
Jova ™ Card ™ Runtime Eavironment (JCRE) 2.1 Specification

Preface
Javen Cardne technologycmhineslpmmoid:cuvnmmwnhgl with a nuntime environment
optimized for mmart cards and related, small-memory ebeddzd devices, The goal of Jeva Card technology is to

bring mxny of the benefits of Java software programming to the resource-constrained world of smart cards.

This document la & specification of the Jave Cerd Runtime Environment (JCRE) 2.1. A vendor of 3 Java Card-
enablod device provides an implementation of the JCRE. A JCRE implementation within the context of this
spoxification refers (0 a veador's implementation of the Java Card Virual Machine (VM), the Java Card
Application Programming Interface (API), or other component, based on the Javi Card technology
specifications. A Reference /mplememation is an implementation produced by Sun Microsystems, Inc., Applets
written for the Java Card platform are referred to as Java Card applets.

Who Should Use This Specification?

This specification is intended to assist JCRE implementers in creating xn implementation, developing a
specification to extend the Java Card technology specifications, or in creating an extension to the Javs Card
Runtime Eavironment (JCRE). This epecification is also intended for Sava Card applet developers who wanta
greater understanding of the Java Card technology specifications.

Before You Read This Specification

Before reading this guide, you should be fumiliar with the Jave mogranuming langusge, the Java Card
technology specifications, and smart card technology. A good resource for becoming familiar with Java
technology end Java Card technology is the Sun Microsystems, Inc. website, located at.
neep://java.sun. com

How This Specification Is Organized

Chapter §, “The Scape and Responsibilities of the JCRE,™ gives an overview of the services required of 3
JCRE implementation.
Chapter 2, *Lifctinme of the Virtas] Mackine,” defines the lifetime of the Virtual Machine.

vi Copyright @ Decanber 14, 1898 Sun Microsystams, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

PCT/US00/01234

24
Java ™ Card ™ Runtine Environment (JCRE) 2.1 Specification

Chapter 3, “Applet Lifetime,” defines the lifetime of un applet
Chapter 4, “Trasient Objects,” provides an overview of trangient objects.
Chapter 5, “Selection,” describes how the JCRE handles applet selection,

Chapter &, “Applet Isolation and Object Sharing,” describes apples isolation and objecs sharing.

Chapter 7, “Transactions apd Atamielty,” provides an overview of atamicity during trapusctions.

Chqﬁer 8, “API Taples,” describes API functionality required of a ICRE but ngt completely specified in the
Java Card 2.1 API Specifieation.

Chapter 9, “Vireuzl Machine Toples,” describes virtual machine specifics.
Chapter 10, “Applet Installer,” provides an overview of the Applet Instailer.

Chapter i1, “API Constants,” provides the numeric value of constants that are nat specified in the Java Cand
API 2.1 Spectfication,

Glossary is a list of words and their definitions to assist you in using this book,

Related Documents and Publications

Refercaces to variows documents or products are made in this manual. You should have the following
documents vailabie:

Java Card 2.1 API Droft 2 Specification, Sun Microsysiems, lne.

Java Card 2.0 Language Subset and Virual Machine Specification, October 13, 1997, Revision 1.0 Fingl,
Sus Microsyatems, fnc,

Java Card Applet Developer's Guide, Sum Mierosystems, Inc.

The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele. Addizon-Wesley, 1996,
1SBN 0-201-63451.1.

The Jova Virnesl Machine Specification (Java Series) by Tim Lindholm snd Frank Yellin. Addison-
Wesley, 1996, ISBN 0-201-63452-X.

The Java (lass Librories: An Annotated Reference {Java Series) by Patvick Chan and Rossans Lee.
Addison-Wesley, two volumes, ISBN: 0201310023 and 0201310031,

£SO 7816 Specification Psrtx |-6.
EMV *96 Integresed Circuit Card Specification for Payment Systems.

Copyright @ Oscember 14, 1998 Sun Mieresystoms, Ine. vl

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 . PCT/US00/01234

25
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Introduction

The Java Card Runtime Environment (JCRE) 2.1 contzins the Java Card Virtual Machine (ViV), the Jave Card
Application Programming Interface (AP1) classes (and industry-specific extensions), and support services.

This document, the JCRE 2.1 Specification, specifies the JCRE fimctionality required by the Java Card
technology. Any implementation of Java Card technology shall provide this necessary behavior and
enviromnent. .

Copyright © December 14, 1998 Sun Microsystemns, Inc. 1.1

SUBSTITUTE SHEET (RULE 2B)

WO 00/45262

PCT/USO0/01234

26
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Lifetime of the Java Card Virtual Machine

In & PC ar workstation, the Java Virtual Machine nims as an opemting system proecess. When the 0§ process iz
terminated, the Jsva applications and their objects are automatically destooyed, .

Lo Java Canl technology the execution lifetime of the Virtual Machine (VM) is the lifetime of the card. Most of
the information stored on a card shall be preserved even when power is removed from the curd. Pervistent
memary technology (such as EEPROM) enables 8 smart card to stere in farmation whes. power is removed.
Siace the VM and the objects created on the card are used to represent application information that is persistent,
the Java Card VM appears to num forever, When power is removed, the VM stops anly temporarily. When the
card is next reset, the VM starts up again and recovers it previous chject heap from persistent storage.

Aside from its persistent nature, the Jeva Card Viraust Machine is just like the Java Virtual Machine,

The card inivalization time is the time afler masking, and prior to the time of card personalizstion and lesuance.
At the time of card initislization, the JCRE is initiatized, The framework objects created btry the JCRE exist for
the lifetimo of the Virtual Machine. Becauss the exaction lifetime of the Virasl Machine asd the JCRE
framewark span CAD sesxions of the cand, the lifetimes of obiecrs ereated by applets will also span CAD
sexsions. (CAD means Cand Acceptance Device, or card reader. Casd sextions are thase periods when the card
is inserted In the CAD, powered up, and exchanging streams of APDUs with the CAD. The card session ends
when the card is removed from the CAD.) Obgects that have this property are called persistent objects.

The JCRE implementer shalf make an object persistent when:
¢ The applet .xegister method is calied. The JCRE stores o reference to the instance of the applet object.

The JCRE immplementer shall ensure that instances of clss appiet are persistent.

* Areference to an chject s stored bn a field of any other persistent abject or in g class's static Beld. This
requirement stems from the need ¢o preserve the integrity of the JCRE's interns) dais structures.

Copyright © Docomber 14, 1998 Sun Microsystems, Ing, 2.1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

21
Java ™ Curd ™ Rentirae Environment (JCRE) 2.1 Specification

Java Card Applet Lifetime

For the purpases of this specification, & Jave Card applet’s lifetime begins at the point that it has been comreatly
loaded into card memory, linked, snd otherwise prepared for eaccution, (For the remainder of this specification,
applet refecs to an spplet written for the Java Card platform.) Applets registered with the Applet. register
method exist for the lifetime of the card: The JCRE interacty with the applet via the applet’s public methods
tnstall, select, deseloct, and process . An applet shall implement the aatic install method. If the
install method is not implemented, the applet’s objects cannot be created or initialized. A JCRE
implementstion shalt call an applet’s tnstall, selact, deselsct, and process methods as described
below. '

When the applet is installed oo the smert card, the static insts 1l methed is calied cace by the JCRE for each
applet ingance created. The JCRE shall not call the applet’s constructor directly.

3.1

The Method install

When install is called, no objects of the applet exist. The main task of the tnatall method within the applet
i3 to cyeate an instance of the Applet class, and to register the instance. All other chjecta that the applet will
need during its lifetime can be created s is feasible. Any other preparations necessary for the applet to be
selected and accessed by & CAD also can be done as is feaxiblo. The instal) method obtains initialization
parsmeters from the cootents of the incoming byte sray parameter.

Typically, an applet creates verious objects, initializes them with predefined values, sets some intemal state
variabies, and calis the Applat. register method to specify the AID (appict IDentificy as defined tn 1ISO
7816-3) to be used to selact it This instalisiion is convidered successfil when thecalito the
Applet.regiater method completes without an exception. The installation is deamod unsuccessful if the
instiall method does not call the Applat . rogl ster method, or if an excoption is thrown from within the
install method priar to the Applet . regiscer method being called, or if the Applet . regi stexr method
throws an exception. If the tnstallation is unsuccessfisl, the JCRE shall perform all cleanup when it regsing
control, That is, all persistent objects shall be retumed to the state they had pricr to calling the install
method. I the insiallation is succeasful, the JCRE can mark the spplet a3 svailsbie for selecticn.

Copyright © Decomber 14, 1998 Sun Microsystams, Ine. 31

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/USG0/01234

28

Iava ™ Card ™ Ramtime Environment (JCRE) 2.1 Specification

3.2

The Method gelect

Applets remain in a suspended state until they are explicidy selocted, Selection occurs when the JCRE recelves
a SELECT APDU in which the name data matches the ALD of the spplet. Selection causes an applet to became
the currently selected applet. .

Privx to calling SELECT, the JCRE shall deseioct the previously selected appiet. The SCRE indicates this to d:e'
applet by invoking the spplet's deselect method. ‘

The JCRE informs the applet of selection by invoking its seLect method.

The applet may decline to be selected by retuming £alae from the call to the salact method ar by throwing
an exceptiott, if the epplet retumy true, the actual SELECT APDU command is supplied o the applet in the
subsequent call to its process method, so that the applet can examine the APDU comtents. The spplet can,
process the SELECT APDU command exactly like it prooesses any other APDU command. It can respond to
the SELECT APDU with data (s¢e the process method for deails), or it can flag.evrans by thrawing an
150Exception with the appropriste SW (returned status word). The SW and optional response: data are
returned to the CAD. :

The Applet.select ingdpplet rmethod shalfl returm wue when cafled during the selact method, The
Applet.aslectingApplat method will continue to returm true during the stbsequent process method,
which is called to process the SELECT APDU command.

If the applet declines to be selected, the JCRE will renum an APDU response status word of
150, 5W_APPLET_SELECT_FAILED to the CAD. Upon selection failure, the JCRE state ig set to indicate that
no applet is selected. i

After successful selection, all subsequent APDUs are delivered to the currently selected applet via the proceass
method. ’)

M

3.3

The Method process

All APDUs arc received by the JCRE, which passes an instance of the APDU class to the procaas method of
the currently selected applet.

Noto — A SELECT APDU might cause & change in the currently selected applet prior to the call 1o the
process method.

On nosmal rerum, the JCRE ammﬁsdtyappmdsﬁx%umewmpldmmpomswwmymwudy
sent by the applet. .

At any time during proceaa, the applet may throw &n 1580Exceptien with an appropriate SW, in which case
the JCRE catches the exception and retwrns the SW to the CAD,

If sny other exception is thrown during process, the JCRE catches the excoption and retums the status word
1507816 . 5v_UNKNONH (o the CAD.

32 Copyright © Decamber 14, 1998 Sun Microsystams, Inc.

SUBSTITUTE SHEET (RULE 28)

WO 60/45262 PCT/US00/01234
29
Java ™ Card ™ Runtime Environr-uent (JCRE) 2.1 Specification
i . AT St
3.4 The Method deselect

3.5

. When the JCRE receives s SELECT APDU command in which the name matches the AID of an applet, the

JCRE calls the DESELECT method of the cuarently selected applet. This sllows the applet to perform any
cleanup operations that may be required in order 1o allow some other applet to execute.

The applet .selectingApplet method shall return false when celled during the deselect method.
Exceptions thrown by the deselect method are caught by the JCRE, but the apple is deselected,

-Power Loss and Reset

Power loss ocours when the card is withdrawn from the CAD or if there is some other mechanical or electrical
failure. When powet it reapplied to the card and on Card Reset (warm or cold) the JCRE shall ensize that:

L]

®

Transient data is reset to the default value i
The urnzaction in progress, if any, when power was lost {(or reset ocourred) is sborted.

The applet that was sclocted when power was lost (or reset occusred) becomes implicitly deselected. (In
thig case the deselect method is not called.)

If the JCRE buplements default applet selection (scc parsgraph 5.1), the defaule applet is selected as the
currently selected applet, sud that the dafhult spplet’s select method is calied, Otharwise, the JCRE sets
its state to indicate that no applet is seleciod.

Copyright © December 14, 1998 Sun Migosystamas, tne. 3-3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCTAIS00/01234

30
Java ™ Card ™ Runtime Environment (JCRE) 2. ! Specification

Transient Objects

Applets sometimes require objects that contain temporary (transient) data that need not be persistent across
CAD sessions. 1ava Card does not suppart the Java keyword cransient. However, Java Card technology
provides methods to create transient arrays with primitive components of references @ objace,

The termn “trangient object” Is a misomer. {t ¢an be incorrectly interpreted to mean that the object itzelf is
ransient. However, only the contents of the ficlds of the object (except for the lenpgth Seld) have a transient
nahire. As with any other object in the Javs progravuming language, wansient objects within the Java Card
platform exist as long as they are referenced from: ’

The stack

Local variables

A class static feld

A field in another existing ebjec

® @ o e

A trangient object within the Java Card platform has the following required behavior

s The fields of 2 transient object shall be cleared to the field’s default value (2evo, false, or nudl) at the
occurrence of certain events (see beiow),

¢ For security reasons, the fields of s tranzicnt object shall never be stored in 2 “perzistent memory
technology.” Using current smart card tachnology as an example, the contents of ransient objecta tan be
stared in RAM, but never in EEPROM. The purpose of this requirement is to allow transient objects to be
used to store sexsion keys.

¢ Wriles to the felds of & transient object shall not have a performance penalty. (Using current smart cand
technology as an exampls, the contents of transiond objects can be stored in RAM, while the contents of
non-cansient objects can be sored in EEPROM. Typically, RAM technology hes & much faster write cycle
time than EEPROM.)

+ Writes to the fields of s transient object shall not be affected by “transsctions.” Thatis, an
abortTransaction will never cause 3 fisld in 2 transient objert to be restorad to & previous value,

This behavior make transient objects idesl for gmall amomts of temporary spplet dats thet is frequently
modified, but that aeed act be preserved stross CAD of select sesstons.,

Copyright © Decemnbar 14, 1958 Sun Microsystems, Inc. ¢-1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 ' PCT/US00/01234

31

Jave ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

4.1

S RS SRR S S

Events That Clear Transient Objects

Persistent objects are used for msintaining states that shali be preserved across card resets. When g transient
objest is created, one of two events are specified that cause its fields to be cleared. CLEAR_ON_RESET
eransient objects are used for mamnmining Kates that ehal) be preserved acrosa applet selections, but not scross
curd resets. CLEAR_ON_DESELECT munsient objects arc used for maintsining sates that must be preserved
while sn applet is selected, but not seross spplet selections or card resets.

Details of the two clear events are 2y follows:

+ CLEAR ON_RESET—the object's ficlds are cleared when the card is resct, When a card is powered on,
this elyo causes 8 curd reset,

Notp — It is not necessary to clear the fields of transicut objects before pawer is ranoved from » card.
However, it is nocessary to guaraniee that the previous conteats of such fields cannot be rocovered cace
power ig lost,)

s CLEAR_ON_DESELECT-~thc abject’s ficlds arc cleared whenever any spplet is desclectod. Because 8
card reset implicitly deselects the currently selected applet, the fields of CLEAR_ON_DESELECT objects
are algo cleared by the same events specified for CLEAR_ON_RESET.

The currently sclected applet is explicitly deselected (its deselect method is called) only when a SELECT
commuand is processed. The carrently selected appiet is dewelected and then the fields of all
CLEAR_ON_DESELECT trangient objects are cleared regardiess of whether the SELECT command:

& Fails to sclect an applet.
e Selects o different applet.
o Reseleces the same spplet.

42 Copyight @ Dacamber 14, 1898 Sun Microgystams, Inc.

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/USO0/01234

5.

32
Java ™ Card ™ Runtime Environmeet (JCRE) 2.1 Specification

Selection

Cards receive requests for service fram the CAD in the form of APDUs. The SELECT APDU is used by the
ICRE to designate & currently selecied applet. Once sslected, an applet receives all subsequent APDUS until the
applet becomes deselected.

There is no currently selected applet when cither of the following ocours:

¢ The card ig reset and no applet has been pre-designated a3 the default appler.
¢ A SELECT command fails when attempting to select an applet.

5.1

The Default Applet

Neginally, applets become selected only via & successful SELECT command. However, some smart card CAD
lications require that there be & default applet that is implicitly selected after every card reset. The behaviar

is

L. After card reset {or power on, which is a form of resex) the JCRE perfonms its initializations and checks
to sec if its internal state indicates that & particulsr applet is the defsult applet. If o, the JCRE makes thig
spplet the currently selected applet, and the applet's select method s called. If the applet's salect
method throws an exception or returns £alae, then the JCRE sets its state to indicate that no applet is
telected. (The applet’s process method is not called during default spplet selection because there is no
SELECT APDU.) When a default applet is selected nt card reset, it shall not require {ts process
methad to be called. .

2, | The JCRE ensures that the ATR has been set and the card is now ready to acoept APDU commands.

If a default applet was successfully gelected, then APDU commands can ba sent directly to this spplet ifa
defauli applet was not selected, then only SELECT commands can bs processed.

The mechanism for specifying a default applet is not defined in the Java Card API 2.1. {tis 8 JCRE
implementatioa detail and is left to the individual JCRE implementers.

Copyright © December 14, 1998 Sun Microsysterns, Ine. 54

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/USO0/01234

33
Jave ™ Card ™ Runtime Environment (JCRE) 2.1 Specifica‘ion

5.2 SELECT Command Processing

The SELECT APDU command is used to seloct an applet. Ity behavior is:
1. The SELECT APDU is elways proceased by the JCRE regardless of which, If any, applet is sctive.

2. The JCRE scarches its interngl table for 8 matching AID. Thelmmdlmppmulmganlpplawhm
the full AID is present in the SELECT command.

JCRE implanmmmﬁumu\hmwmirmmmppmmmuﬁmuﬂdou An exsmple of this
is getection via partial AID match as specified in [SO 7816-4. The epecific requirements are as follows:

Noto - An esterisk indicates binary bit numbering as in 1507816, Most significant bit = b8. Leagt am:ﬂmt
bite=bi,

8} Applet SELECT coourand uses CLA=0200, INS=0xA4.
b) Applet SELECT command upes “Selection by DF name”, Therefore, P1=0x(4.

€) Any other value of PI inplics that is not an epplet select. The APDU is processed by the cumsently
sclected npplet

d) JCRE shall support exact DF namie (AID) selection Le P234b0000 xx00. (b4,b3® are don't care).
¢) Al other partial DF name SELECT options (52,b1#) are JCRE implementation dependent.
f) All file control information option codes (b4,b3¢) shall be suppotted by the JCRE and inverpreted
and proceased by the applet.
3. iIfno AID match ia found:

8. [If there is no currently selectod applet, the JCRE responds to the SELECT command with status code
06999 (SW_APPLET _SELECY FAILED).

b. Otherwise, the SELECT command is forwarded to the currently selected spplet's process method.
A context switch into the spplet’s context occurs at this point. (The spplet context is defined in
pasegraph 6.1,1.} Apples may use the SELECT APDU comumund fbr thelr own internsl SELECT
processing,

4. Ifs matching A is found, the JCRE prepares to select the new applet li’dzm i3 an currently selected
apples, it i descionted vis & call to its deselect method. A context switch into the deselocted applet’s
context occurs gt this point. The JCRE context is restored upon exit from dsgelect.

5. The JCRE sets the new currently selecied appiet. The new applet is selected via & call W its palect
method, snd s context switch into the new spplet’s eantext oocurs,

8. [ftheapplet’s select method throws sa exception or retumns £alee, then JCRE state iz set so thatno
applet is selected. The JCRE responds to the SELECT command with ststus code 0x6999
(SW_APPLET_SELECT_FAILED).

b. The new currensly selected spplet’s process method is then calied with the SELECT APDU as an
input parameter. A cantext switch into the epplet’s context ocome

Notes -

62 Copyright ® Docsmber 14, 1988 Sun Mizrogystams, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

PCT/US00/01234

34

Java ™ Card ™ Ruamtime Environment (JCRE) 2.1 Specification

If there is no matching AID, the SELECT command i3 forwarded to the currently selected nppletﬁany) for
processing 88 & normal applet APDU comemand,

If there iz 2 matching AD and the SELECT command fails, the JCRE always enters the giate where a0 applet is
selected.

1f the matching AID is the same as the currently selected applet, the JCRE still goes through the process of
deselecting the applet and then selecting it. Reselection cauld fail, leaving the card in 5 state where no applet is
selected, .

5.3

Non-SELECT Command Processing

Whent o non-SELECT APDU i received and there is no currently selected applet, the JCRE shall respend o the
APDU with status code 026999 (SW_APPLET, SELECT FAILED).)

When 8 non-SELECT APDU is recelved snd there is o currently selected applet, the JCRE invokes the
process method of the awrently selected applet passing the APDU a3 & parameter. This causes s context
switch fram the JCRE conteat into the cwrrently selected applet’s When the process methad exits,
the VM gwitches back to the JCRE context. The JCRE sends & response APDU und waits for the next command
APDLS

Capyright © Dacembar 14, 1998 Sun Microsystoms, ine. 53

SUBSTITUTE SHEET (RULE 26)

WO 00745262] PCT/US00/81234

35
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specificaton

Applet Isolation and Object Sharing

Any implementation of the JCRE shall support isolation of contexts and applets. lsolation means that one applet
can not access the fields or objects of an applet in another context unless the cther applet cxplmuy provides an
interface for access. The JCRE mechanisms for applet isolation and object sharing are detailed in the sections
below.

6.1

6.1.1

Applet Firewall

The applet firewall within Jave Card technology is runtime-enforced protection and is scparsie from the lava
technology protestions. The Java lsnguage protections still spply to Java Card sppleta. The Java langusge
engures that sroag typing and protection attributes are enforced.

Applet firewslls arc always enforced in the Java Card VM. They sliow the YM o sutomatically perform
additional security checks at nntime.

Contexts and Context Switching

Firewslls essentially partition the Java Card platfonm’s object system into separate protected object spaces
called consexts. The firewsl! is the boundary between one context and another. The JCRE shall sllocate and
mansge an applet context for esch applet that is installed on the card. (But see paragraph 6.1.1.2 below for a
discussion of group contexts.)

fn addition, the JCRE maintains its own JCRE context. This context is much like an applet context, but it has
specinl system privileges g0 that it can perform operations that sre denied 10 applet contexts.

At any point in time, there is only one active context within the VM. (This is called the currently cctive
consext.) Al bytecodes that sccess objects are checked at runiime against the currently active context in arder to
determine if the acoess i3 allowed. A java.lang.SecurityException is thrown when an access is
disallowed.

When cersin well-defined conditions sre met during the exccution of invoke-type bytecodes as described in
paragraph 6.2.8, the VM performs a contex switch. The previous context is pushed on an intemal VM ssack, s
new context becomes the aurrantly sctive context, and the invoked method executes in this new eontext. Upon
exit from that method the VM performs a restoring context switch, The oviginal context (of the caller of the
method) is popped from the stack and is restored as the currently active context. Context switches can be
nexted. The maxirum depth depends on the amount of VM sack space svailsble.

Copyright ® December 14, 1588 Sun Microsystems, ine. 61

SUBSTITUTE SHEET (RULE 28)

WO 00/45262

PCT/MUSO0/0%234

36

Javs ™ Card ™ Runtime Eavironment (JCRE) 2.1 Specification

Most method invocations in Java Cand technology do not cause » context switeh. Context switches only occur
during invocation of and return from certain methods, 8 well a5 during exception exits from those methods (et
6.2.8).

During a context-switching method invocation, wn additional pisee of date, Indicating the currently active
context, i pushed onto the return stack. Thig context is restored when the method is exited.

Further details of contexts and context switching are provided in later sections of this chapter.

6.1.1.1 Group Contexts

6.1.2

6.14

Usually, each instance of & Java Card applet defines & sepamte context. But with Java Card 2.1 technology, the
concept of group contex! is introduced. 1f more than one applet is contsined in a single Java package, they share
the same context. Additionally, all instances of the same appiet class share the game context, In other words,
there is no firewall between two apple! instances in & group context.

The discussion af contexts and context switching above in section 6.1.] assumes that each applet instance is
associated with a separate context. In Java Card 2.1 technology, contexts are compered to enforce the firewall,
and the mstance AID is pushed onto the stack, Additionally, this bappens not only when the context switches,
but alen when control switches from su object owned by one apple: instance to an object owned by another
instance within the same package.

Object Ownership

When a new object is created, it is agsociated with the currently sctive context. But the object is owred by the
applet instance within the currently sctive context when the object is instantiated. An object is owned by an
spplet instance, or by the JCRE.

Object Access

In genersl, an object can only be accessed by its owning context, that i, when the owning context is the
currently active context. The firewsll prevents an object from being sccessed by another applet in a different
contaxt,

In implementstion terng, each time an object is socessed, the object’s owner context is compared to the
currently sctive caantext, If these do not match, the nocess is not performed and & BacurityExcoptionis
thrown,

An object is accessed when ane of the following bytecodes is executed using the object’s reference:

getfield, putfield, invokevirtusl, invokeintarfaca,
athrow, <Traload, <Trastore, serraylength, chachcsast, inatsnceof
<T» tefers to the various types of smay bytecodes, such a8 balaad, sastore, ett.

This list includes any special or optimized forms of these bytecodes implemented in the Java Card VM, suchas
gatfisld b, sgetfinld s _this, el

Firewall Protection

The Java Card firewall provides protection against the mnst frequently anticipated security concern: developer
mistakes and design oversights that might allow sensitive data to be “lesked™ to ancther applet. An spplet may
be able to obtein ap object reference from s publicly accessible location, but if the object is osmed by e
different applet, the firewall ensures gecurity.

62 Copyright © Dscember 14, 1998 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

6.1.5

PCT/USG0/01234

37 '
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification
The firewsll aleo provides protection againgt incorrect code, If incosreet code is logded onto & card, the firews)]
still protects objects fram being sccessed by this code, '
The Java Card API 2.1 specifies the basic minimum protection requirements of contexts and fircwalls because
these features shall be supported in ways thet are not wansparent to the applet developer. Developers shall be
sware of the behavior af objects, APIs, and exceptions related to the firewall. o

JCRE implementers arc free to implement additional security mechmisms beyond those of the spplet firewsl),
a5 long a2 these mechanisms are transparent to applews and do not change the externally visible aperation of the
VM.

Static Fields and Methods

It should also be noted that classes are not owned by contexts. There is to nmtime context check that can be
performed when & class static fickd is wocessed. Neither is there & context switch when s Ratic method is

‘invoked. (Similarly, invokespacis) causes no context switch.)

Public etatic fields and public static methods sre accessible from sny coniext: gtatic methods execute in the
same context as their caller. .

Objests referenged in static fields are just regular objects. They are owned by whomever created them and
standard firewsii access rules apply. If i is necessary to share them seross mukiple apples convexts, then these
objects need to be Shareable Interface Objects (S10s). (Sce pasagraph 6.2.4 below.) .

Of course, the conventional Java technology protestions are still enforced for static fields and methods. In
addition, when applets are installed, the Insalier verifies that each attempt to link to an external static field or

- method is permitted. Instaliation snd specifics sbout linkage are beyond the scope of this specification.

6.1.5

¢

.1 Optional static access checks

The JCRE may perform optional runtime checks that src rodundant with the constraints enforced by & verifier,
A Javy Card VM may detect when code violates fundumental language restrictions, such as invoking a private
method in snother class, and report or atherwise address the violation.

6.2

R

Object Access Across Contexts

To enable applets to intersct with each other and with the JCRE, some well-defined yet secure mechenisms are
provided 20 dae content can access an object belanging to another coment :

These mechanisms are providad in the Java Card API 2.1 mduediscunedinlhefolléwhgudims:

JCRE Entry Point Objects
Global Armeys

JCRE Privileges
Sharesble Interfaces

Copyright © Decomber 14, 1998 Sun Microsystems, Inc. 63

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/US00/01234

38
Java ™ Card ™™ Runtime Environment (JCRE) 2.1 Specification

6.2.1 JCRE Entry Point Objects

Secure computer systems shafl have & way for non-privileged user processes (that sre restricted to & subset of
resources) to request System services performed by privileged “gysiem” routines.

1 the Java Card APL 2.1, this is sccomplished using JCRE Enrry Point Objects. These are objects owned by the
JCRE context, but they have been fiagged as containing entry point methods.

The firewall protects these objects Erom access by spplets. The entry point designation sliows the methods of
these objects to be invoked from any context. When that ocours, 8 context switch to the JCRE context is
performed. Thess methods are the gateways through which applets request privileged JCRE system services.

There are two categories of JCRE Entry Point Objects *
« Temporary JCRE Entry Point Objects

Like all JCRE Eniry Point Objects, methods of temporery JCRE Entry Point Objects can be invoked from
any applet context, However, references to these objects canpot be siored in class variables, instance
variables or srvay components. The JCRE detects and restricts attompts to store references to these objects
23 pant of the Rrewall fmczionality 1o prevent wnsuthorized re-use,

The APDU object and ali JSCRE owned exception objects are examples of tempotary JCRE Entry Point
Objects.
s Pemancnt JSCRE Entry Point Objects

Like ait JCRE Entry Point Objects, methods of permanent JCRE Entry Point Objects can be invoked from
any applet context. Additionally, references to these obyjects can be stored and freely re-used.

JCRE owned AID Instances sre axamples of permanent JCRE Entry Point Objects.
The JCRE is responsible for:

Determining what privileged serviees are provided to applets.
Defining classes containing the entry point methods for those services.
Ceating one r more ohject insances of those classes.

Designating those instances as JCRE Entry Point Ohjests.
Designating JCRE Entry Point Objects 88 temporery ot permancal.
Making references to those objests svailable to applets as noeded.

B & B B 8 ©

Note — Only the methods of these objects sre accessible through the Grewall. The fields of these objects are mill
pmouedby&cﬁrmﬂmdmm]ybemmdhyﬁw!ﬁ\&mm

Ouaty the JCRE itself con designats Eotry Point Objects and whether they are temporery of perasanent, JCRE
implementers are respoasitle for implementing the mechanizm by which JCRE Eatry Point Objects are
designated asd how they bocome temponiry or parmanent. ' :

6.2.2 Global Arrays
The global nsture of ecrme objects requires that they be accessible from any applet contest. The firewall would
ordinsrily prevent these objects from being used in & fexible manner. The Juve Card VM allows an object to be
designated as global.
All global asvays are temparary global srray objects. These ohjecty are owned by the JCRE context, but can be
accessed from eny epplet context However, references to these objects cannot be giored in class variables,

64 Copyright © December 14, 1588 Sun Microsystems, Ine,

SUBSTITUTE SHEET (RULE 26)

PCT/US00/01234

WO 00/45262

6.2.3

6.2.4

395
Java ™ Card ™ Ruatime Environment (JCRE) 2.1 Specification
instance variables or smay components, The JCRE detecty and restricts altempts to store references 16 these
objects as part of the fuewall functionality to prevent unauthorized re-use.

For added security, enly armays can be designated a3 global and only the ICRE itself can designate global
urrays. Because applets eannot create them, ne API mettiods are defined. JCRE implementers are responsible
for implementing the mechanism by which gioba! arvays are designated.

At the time of publication of this specification, the cely global arrays required in the Java Card API 2.} are the
APDU buffer and the byte srvsy input parameter (array) 1o the appiay install method.

Nota — Because of its global strus, the AP specifies that the APDU buffer is clesred to zeroes whenever sn
applet is selected, before the JCRE accepts & aew APDU command, This is to prevent an epplet's potentially
sensitive dats from being “leaked” to another applet vis the global APDU buffer. The APDU buffer can be
sccessed from 8 shared interface object context and i3 suitable for passing dats across upplet contexty. The
spplet is responsible for protecting scerct datn that may be sccessed from the APDU buffer.

JCRE Privileges

Because it is the “system” context, the JCRE context has 3 special privilege. It can invoke 8 method of any
object on the card. For example, assume that object X i owned by spplet A Nowmally, only coniext A can
sccess the ficlds and methods of X. But the JCRE context is allowed to invoke any of the metheds of X. During
such an invocation, & context switch oocurs from the JCRE context to the spplet context that owns X.

Note - The JCRE can sccess both merhods and fields of X, Metbod access is the mechanism by which the
JCRE enters an applet context, Although the JCRE could invoke eny method through the firewall, it il only
Invoke the melect, process, deselact, and getsharsablelnterfacaObject (see 6.2.7. 1) methods
defined In the Applet clss,

The JCRE context is the curvently active context when the VM begins running after 8 card reset, The JCRE
context is the “root” context and is alwnys either the carrently active context or the bottom eontext saved on the
stack,

Shareable Interfaces

Shareable interfaces are s new Gature in the Java Card AFI 2.1 to enable applet internction. A shareshle
interface defines & sei of shared interfuce methods, These interface methods can be invoked from one spplet
context even if the object implementing them is owned by another spplet context. '

In this specification, an object instance of 8 cless tmplementing a shareable intevface is called a Shareable
fnterfoce Object (SI0). '

To the owning context, the SIO s a normal bject whose fields end methods can be ecceased. To any other
contexy, the 510 is an instance of the shareable interface, and only the methods defined in the shareable
interface are socessible. All other fields end methods of the S10 are protecied by the firewal),

Shareable interfices provide 8 secore mechanism for inter-applet conumunication, as follows:

I, Tomake an clject svailable 1o another spples, spplet A first defines a shareable interfice, SL A shareable
interfice extends the interfoce Javacard. Eramevork . Sharesble. The methods defined in the
shareable interface, 81, represent the services that spplel A makes accessible to other applets,

2. Applet A then defines u clasy C that implements the ghareable interface SI. C implemnents the methods
defined in 8, C may also define other methods and fields, but these mre protected by the applet firewall,
Only the methods defined in SI are sccegsible to other applets.

Copyright © December 14, 1898 Sun Miczogystems, e, 6-5

SUBSTITUTE SHEET (RULE 26)

WO 60/45262 _ PCT/US00/01234

40

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

3. Applet A creates an object instance O of class C. O beloage to applet A, and the firewail allows A to scoess
any of the fields and methods of O.

4. To sccess applet A's object O, applet B creates an object reference 5§10 of type S1.

5. Applet B invokes a special method (7CSystem. gutAppletShareablalntaxfacethjact, deseribed in
peragraph 6.2.7.2) to request a shared interface chject reference from epplet A.

6. Applet A receives the request snd the ALD of the requester (B) via
Applet.getSharashlelntartacetbieact, and determines whether or not it will shafe object O with
applet B.

7. 1fapplet A agrees to share with spplet B, A responds to the request with a reference to O. This :ef&cnoc is
cast to type Shareable 5o that nane of the fields or metheds of O are visible.

8. Applet B receives the object reference from spplet A, casis it to type SL, and stores it in object reference
$10. Even though SIO sctually refers to A's object O, 510 is of type SL Only the shareable interface
methods defined in S1 are visible to B. The firewall prevents the ofhier Selds and methods of O from being
accessed by B. :

9. Applet B can request service from applet A by invoking one of the shareable interface methods of S10.
During the invocation the Java Card VM perforvas & context switch, The oviginal currently setive context
(B) is saved on & siack end the context of the owner (A) of the actual object {O) becomes the new currently
active context. A's implementation of the ghareable interface method (SI method) exeautes in A's context.

10. The SI method can find out the AID of its client (B) vis the JCSysten.getPraviousContaxtAlD
method. This is described in paragraph 6.2.5. The method determines whether or not it will perform the
service for applet B.

11. Becsuse of the context switch, the firewall allows the 5§ method 10 acoess sl the fiedds and methods of
object O and any other object owned by A. At the seme time, the firewal! prevents the method from
accassing non-shared objests owned by B.

12, The 51 method can socess the parameters passed by B and ean provide & return value to B.

13, During the retwn, the Java Card VM performs a restoring context switch, The origingl caarently active
context {B) is popped from the stack, and again becomes the curvent context.

14. Becsuse of the context switch, the firewall sgain sllows B to access any of its objects and prevents B from
. accessing non-ghared objects owned by A.

6.2.5 Determining the Previous Context

Wherran applet calls JoSyaten. getPrevicuaCantextAIl, the JCRE ghall retuzn the instance AID of the
applet instance active at the time of the last context switch.

6.2.5.1 The JCRE Context

The JCRE context does not have an AID. If an applet calls the gntPrevicusContaxtAID method when the
applet context was entered direcily from the JCRE context, thiz method retens mell .

If the applet calls got PreviousContextAID from a method that may be accessed either from within the
applet itsalf or when ocessed via & shareable interface from an extrmal applet, it shall check for null return
before performing caller AID suthentication,

86 Copyright ® Decamber 14, 1998 Sun Microsystemns, inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

6.2.6

41
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Shareable Interface Details

A sharesble interface is simply one that extends (either directly or indirestly) the tagging interface
javacard. franawork,Shareabla, This shaxexble interface is similar in concept to the Remote interface
used by the RMI facility, in which calls to the interface methods take place serass & locsl/remaote boundary.

6.2.6.1 The Java Card Shareable Interface

6.2.7

Interfaces extending the Shaxeable tagging interface have this special property: calls to the interface
methods take place scross Jave Card's applet firewall boundary via & context switch.

The Shareable intetface sexves to identify sl shared objects. Any object that needs to be shared through the
applet firewall shall direcily or indirectly implement this interfoce. Only thase methods specified in a sharesble
interface are available through the firewall

Implementation classes can implement any numbes of shareable interfaces and can extend other shareshle
implementasion classes.

Like sny Java platform interface, a shareable interface simply defines s set of service methods. A service
provider class declares that it “implements” the sharesble interface and provides implementations for each of
the service methods of the intafice. A service client class accesses the services by obiaining an object
reference, casting it to the shareable interfaee type if necessary, and invoking the service methods of the
interface.

The shareable interfaces within the Java Card technology shall bave the following propertes:

® When s method in a shareable interface is invoked, a context switch occurs o the context of the object’s
ownet. .

s When the method exits, the context of the caller iz restored.

¢ Exception handling is enhanced w0 that the currently active context is corectly restored during the stack
frame unwinding that occurs as an exception is thrown.

Obtaining Shareable Interface Objects

Enter-applet communication is sccomplished whien & client applet invokes s shareable interface method of 8 SIQ
belonging to & server applet. In order for this to work, there must be & way far the client applet to obtain the SIO.
from the server appiet in the first place. The JCRE provides a mechanism to make this possible. The Applat
class and the JCSyatam class provide methods to enabie e client to request services from the zerver,

6.2.7.1 The Method Applet .getShareableInterfaceObject

‘This methad is implementad by the server eppict instance. 1t shall be calted by the JCRE to medinte between a
client applet that requests to use an object telonging o ancther spplet, and the server applet that nakes its
objects svailable for sharing.

The default behavior shall retum null, which indicates thas an applet docs not pardeipate in inter-applet
communication.

A server applet that is intended to be invoked from another applet needs to override this method. This method
should examine the clientAID and the paraneter, If the cliancAlD is not one of the expected AlDs, the
method should return null Similarly, if the parameter is not recognized or if it is not allowed for the

Copyright © December 14, 1988 Sun Miousystems, lnc. 67

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 ' PCTAUIS00/01234

42

Iave ™ Card ™ Runtime Eavirorment (JCRE) 2.1 Specification

£11entAID, then the method also should rerurn aull. Otherwize, the apples should retum an SI0 of the
shereable interface type that the client has requesied.

The server appiet need aot respond with the same 510 to all clients. The server can nupport multiple types of
shared interfices for different purposes and use ¢l iantAID end paramecer to detamine which kind of SIO
to returm to the client.

6.2.7.2 The Method JCSystem.getAppletShareablelntexfacetbiect

6.2.8

The fCsyscen class contains the method getappletShareableintarfacatbject, which is invoked by a
client spplet to communicate with & server applet.

The JCRE shall implement this method to behave a3 foljows:
I. The ICRE searches its internal applet table for one with serveraln. [fnot found, null is returned.

2. The JCRE invokes this applet's gat Sharenhlaelntexfacetbjact method, passing the €1 LantAID of
the caller and the paramster, :

3. A context switch ocours to the server applet, and its implementation of getShareableinterfacechiect
procecds 85 described in the previous section, The server applet returas a SO (or null),

4. gecthAppletShareablelnterfaceChiect retwrns the same SIO (or null) to itz calles,

For enhanced seaurity, the implementation shall make it impossible for the client to tell which of the following
conditions caused a null value to be retumed:

The serverAtD was not found.

The server applet does nat participate in trter-spplet communication.

The server applet does not recognize the clientAYD ar the parameter.

The server spplet won't communicate with this client.

The server applet won't communicate with this client as specified by the parameter.

& 8 & & B

Class and Object Access Behavior
A suatic class field is aocessed when one of the following Javs bytecodes is exexuted:
gueptatic, putstatie
An object is acceszed when one of the following Java bytecodes is excouted using the object’s reference:

getfield, putfield, invekevirtual, invokeintariace, athrow,
«Traload, «Trastore, arraylength, checkcast, instanceof

<T» refers to the various types of array bytecodes, such as balosd, ssstore, &t

This list also includes may special or optisnized forms of these bytecndes that may be implemented in the Java
Card VM, such as gecfield b, sgetfiald_s_this, cic

Prior to performing the work of the bytecode as specified by the Java VM, the Java Card VM will perform an
access check on the referenced object. If access is denied, then 8 SacurityException is thrown.

The scoess checks performed by the Java Card VM depend en the type and ownes of the referenced object, the
bytecode, and the currently active context. They are descrived in the following sections.

68 Copyight ® Dacember 14, 1538 Sun Microsystams, Inc.

SUBSTITUTE SHEET (RULE 286)

WO 00/45262 PCT/US00/01234
43
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification
6.2.8.1 Accessing Static Class Fields
Bytecodes:

gatstetic, putatatic

6.2.8.2

if the JCRE i3 the curvently active context, then access is allowed.

Otherwise, if the bytecode is putstatic und the field being stored is & reference type and the reference
being stored is 8 refevence to & temporary JCRE Entry Point Object or s global amay then access is denied,

Otherwise, reoess is sllowed.

Accessing Array Objects

Bytecodes:

«Tsaload, <Tsamtore, arzsylength, checkeast, instancest

6.2.8.3

(f the JCRE is the currently ective context, then socess is sllowed.

Ctherwise, if the bytecude is eantore aad ihe component being stored is & reference type and the
reference being stored is 8 reference to s temporary JCRE Entry Point Object or a global array Qien access
is denied.

Otherwise, if the srray is owned by the curvently sctive cantext, then sccess is allowed.

Otherwise, if the array is designated giobal, then access is allowed,

Otherwise, access is denied,

Accessing Class Instance Object Fields

Bytesodes:

getfiasld, putfield

6284

If the JCRE i the ourently ective cantext, then acoess is aliowed.

Otherwise, if the bytecode is put£4uid and the field being stored is & reference type snd the reference
being stored is & reference to & temporary JCRE Entry Point Object or 8 globs! array then access is denicd.

Otherwise if the object is owned by the curvently active context, then acoess is allowed,
Otherwise, aceess i denied.

Accessing Class Instance Object Methods

Bytecodes:

iavokavirtusl

If the object is owned by the currently active content, then scoess Ir allowed. Context is switched to the
object owner's context.

Gtherwise, il the object is designated a JCRE Entry Point Object, then acoess is allowed. Context is
switched to the object owner's context (shall bz JCRE),

Copyright © December 14, 1998 Sun Microsysterns, Inc, 69

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/US00/01234

44
Java T4 Card ™ Runtime Environment {(JCRE) 2.1 Specification

B Otherwise, if JCRE is the currently setive cofftext, then acoess is allowed Context is switched to the objext
owner's content.

B Otherwise, access is denied,

6.2.8.5 Accessing Standard Interface Methods
Bytecodes:

invokeinterface

8 If the object is owned by the currently active contexe, then aceess is allowed.

B Otherwise, if the ICRE is the curtently active context, then access is allowed. Context is switched to the
object owner's context.

8 (rherwise, sccess if denied.

6.2.8.6 Accessing Shareable Interface Methods
Bytecodes:

invokeinterface

@ If the object is owned by the currently active context, then access is allowed,

B Otherwise, if the object’s class implements a Shazeable interface, and if the interface being invoked
extends the Shareable interface, then access is allowed. Context is switehed to the object owner's
context.

8 Otherwise, ifthe JCRE is the cusrently active context, then sceess is allowed. Context is switched to the
object owner's context,

Otherwise, nooess is denied,

B-10 Copyright © Deosmber 14, 1698 Sun Mirosystams, Ing.

SUBSTITUTE SHEET (RULE 28)

WO 00/45262

6.2.8.7

PCT/USB0/01234

45
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Throwing Exception Objects

Bytecodes:

acthrow

6.2.8.8

if the object is owned by the currently active contex, then sccess is sffowed.

Otherwise, if the object is designated & JCRE Entry Point Object, then access is allowed.
Otherwise, if the JCRE is the currently active context, then acoess is allowed.
Otherwise, access is denied. '

Acceessing Class Instance Objects

Bytecodes:

checkeast, instanceof

6.2.8.9

If the object is awned by the currendy active context, then aceess is allowed.

Orherwise, if JCRE is the currently active canlext, then access is allowed.

Otherwise, if the object is designated a JCRE Entry Point Otbject, then sccess is sllowed.
Otherwise, if the JCRE is the currently sctive context, then necess is allowed.
Otherwise, access is denied.

Accessing Standard Interfaces

Bytecodes:

checkcast, instanceof

If the object iz owned by the currently active context, then scoess is allowed,
Otherwise, ifthe JCRE is the curtently active context, then access is sliowed.
Otherwise, access is denled.

6.2.8.10 Accessing Shareable Interfaces
Bytesodes:

oh

at, ipet £

1fthe object is owned by the currently sctive context, then access is aliowed,

Otherwise, if the object’s class implements 8 Shareabls interface, snd if the ohject is being cast into
(checkeast) o is an mstance of (instanceof) an interface that extends the Bhareable interface, then scorss
is allowed.

* Otherwise, if dre JCRE is the currently sctive cantext, then access is allowed.

QOtherwise, secess is denied.

Copyright © Decamber 14, 1988 Sun Microsystens, Inc. 611

SUBSTITUTE SHEET (RULE 256)

WO 00/45262 PCT/US00/01234

46

Java ™ Card ™ Rugtime Environment (JCRE) 2.1 Spexification

6.3

Transient Objects and Applet contexts

Transient objects of CLEAR_ON_RESET type behave like persistent objects in that they can be accessed only
when the arrently active applet contest is the same as the owner of the object {the currently active applet
eonirext at the time when the object was cregted).

Transient objects of CLEAR_ON_DESELECT type ¢an only be created or sccessed when the currently active
applet context is the currenily selected applet context. if any of the makeTranglent factory methods is
called to create 5 CLEAR_ON_DESELECT type transient objecs when the currently active applet context isna
the currently selected applet conteat, the method shall trow & Syat emException with reason code of
ILLEGAL TRANSIENT. Ifan attempt is rude to sccess a transient object of CLEAR_ON_DESELECT type
when the currendy sctive applet context is not the currently sslected applet context, the JCRE shall throw n
SecurityException.

Applets that are part of the same package share the same group context. Every applet ingtance from a package
shares all its object instances with all other Instances froem the same package. (This includes wansient objects of
both CLEAR_ON_RESET type and CLEAR ON_DESBLECT type owned by these applet ingtances.)

The transient objects of CLEAR _ON_DESELECT type owned by any applet inmance within the same package
shall be accessible when any of the applet instances in this package i8 the currently selecied spplet.

812 Copynght © Decernber 14, 1988 Sun Microsysterna, inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCTUSO0/B1234

47
Java ™ Card ™ Runtime Eavironment (JCRE) 2.1 Specification

Transactions and Atomicity

A transgction is a logical set of updates of persistent data, For cxnmple, wansferring some amount of money
from one sccount to another is & banking transaction, It is important foc ransactions to be aromic; either sl of
the data fields are updated, o noneare. The JCRE provides robust support for atomic gangactions, so that card
data is restored to its original pre-gAnsaction state if the ransaction does not complete normally. This
mechanism protects againgt events such a5 power loss inmemiddleonumucﬁgn.udugahmmm crars
that might cause data corruption should all steps of & transaction not complete normally.

7.1

Atomicity

Atomichy defines how the card handies the contents of persistent wossge after a stop, failure, or fatal exception
during an update of & single object or class field or ary companent. if power is lost during the updste, the
applet developer shall be able to rely on what the field or &My component containg when power is restored.

The Javs Card platform guarantecs that any vpdate to a single persivtent object or class field will be atamic, In
addition, the Java Card platform provides single eompanent level atomicity for persistent srrays. That is, if the
smart card loses power during the update of a dats clement (field in sn object/class or component of un srrey)
that shall be preserved scross CAD sessions, that dats element will be restored to its previous value.

Some methods also gusrantee atomicity for block updates of multiple data elements, For example, the stomicity

of the Meil . arrayCopy method guarantees that either all bytes are cotrectly copied or else the destinstion
&Ry is restoced to its previous byte values.

An applet might not require stomicity for arrsy updates. The ve i »arTayCopyionatomic method is provided
for this purpose, It does not use the wansaction commit buffer even when called with a transaction in progress.

7.2

Transactions

An applet might need to atomically update several different Felds of arvey components in several different
objects. Either sl updates take place correctly and conzistenily, or clse ofl felds/components are restored to
thelr previous values.

The Java Card platform supports & transsctional model in which n applet can designate the beginning of an
stomic get of updates with s call to the JCsystem.beginTransact ion method. Esch object update efter this

Copyright © Decamber 14, 1998 Sun Microsystems, Inc, 7-1

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/US00/01234

47/1

Java ™ Card ™ Runtime Eavironment (JCRE) 2.1 Specification

point is conditionally updated. The field or aray componen: Eppears 1o be updated-reading the field/arvay
companent back yields its latest conditional valuo—but the update is not yet committed.

When the applet eslls ScSysten . commitTransaction, sif eonditionel updstes are cammittad to persistent
storage. If powes is lost or if some other system failure ocours prioe to the completion of

JCSyatem, comnd tTranssction, sll conditlonally updated fields or array components are restored to their
previous vatues. if the applet encounters an interns! problem or decides to cancel the trengaction, it can
programmatically unde conditional updates by calling JCyaten. shortTransaction,

7.3

Transaction Duration

A transsction always ends when the JCRE regaine programmatic control upan retnn from the applet’s select,
deselect, process or {nstall methods., This is true whether 8 transaction ends narmally, with an applet’s
call to commit Tranaact Lon, or with an abartion of the erangaction {either programmutically by the applet, o
by default by the JCRE). For more details on transaction shaortion, refer to paragraph 7.6,

Transaction duration is the life of a transaction between the csll to JCSystem. bagintranaact fon, aad either
4 eall to comeitTranssetion or an shorion of the transaction, '

7.4

Nested Transactions

The model currently assumnes that nested transactions are aot possible. There can be only one traasaction in
progress ata time. 1f JCSystem. beginTransact Son is called while & ersnsscsion is already in'progress, then
aTransaccionBxception s thrown.

The JeSysten. transnct 1ondept h method is provided to allow you o determine if o ransuction is in
progress.

1.5

e O R RN T Sy

Tear or Reset Transaction Failure

If power is lost (1eas) or the card is reset or some other system fallure occurs while 8 transaction is in progress,
then the JCRE shall restore to their previous values all fields and srray components conditonally updated since
the previous call to JCSyscem, baginTransackion,

This action is performed automatically by the JCRE when it reinitislizes the eard afiet recovering from the
power logs, reset, or failure. The JCRE determines which of those objects (if any) were conditionally updated,
and restores them,

Nate - Object space used by instances created during the wansaction that faited due 1o power loss or card reset
can be recovered by the JCRE. :

7.2 Copytight ® December 14, 1998 Sun Microsystems, inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCTAUS00/01234

47/2

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Spexification

7.6

7.6.1

7.6.2

7.6.3

Aborting a Transaction

Transactions can be aborted either by an appled or by the JCRE.

Programmatic Abortion -

If an applet encounters an interns! problem or decides to cancel the tregusaction, it can programmatically undo
conditional updates by calling Jcsyaten. abort Transact ion. If this method is called, all conditionally
updated fields end erray components since the previous call to JCSystem. beginTransace ion are restored (o
their previous values, and the JCSystem. transact jonbapth value s reset to 0.

Abortion by the JCRE

If an spple retums from the melect, deselect, process, o install methods with s cansaction in
progress, the JCRE automatically sborts the transaction. {f s return from any of select, deselect, proceas
or inptall methods occurs with s ransaction in progress, the JCRE sets as if an exception was thrown,

Cleanup Responsibilities of the JCRE
Object instances created during the transaction that is being aborted can be deleted only if sll references 1o these

objects can be located and converied into null. The JCRE shall ensize that references to cbjects crested
during the aborted transaction are equivsient to a nul 1 veference. ’

1.7

Transient Obj ects

Only updstes to pevsistent objects participate in the transaction, Updates to transient objects are never undone,
regardless of whether of not they were “inside » ransaction.”

7.8

—

Commit Capacity

Since platform resources are limited, the number of byses of conditionally updated date thas can be sccumulated
during & Gansaction is limited. The Jave Card technology provides methods to determine how much commir
capactty is available on the implementation. The commit capacity représents an upper bound on the number of
conditional byte updstes available. The sctual number of conditional byte updates available may be lower due
to mansgement overhead. :

An exception is thrown if the commit capacity is exceeded during & fransscticn.

Copysight © Decamber 14, 1938 Sun Microsystams. ne. 7-3

SUBSTITUTE SHEET (RULE 285)

WO 00/45262 , PCT/USO0/01234

47/3

Java ™ Card ™ Runtirne Environment {(JCRE) 2.1 Specificstion

API Topics

The topics in this chapter complement the requirements specified in the Java Card 2.1 API Draft 2
Specification. The first topic is the Java Card /O functionality, which is implamented entirely in the APDU class.

The seoond topic is the API supporting Java Card security and cryptography. The JCSystem class encapsulates
the API version level.)

Transactions within the AP1

Unless specifically called out in the Java Card 2.1 API Specification, the implementation of the APl classes
ghall not initiate or atherwise alter the state of & trangaction if one is in progreas.

Resource Usge within the APl

Unless specifically called out in the Jova Card 2.1 API Specification, the implementation shall support the
invacstion of APl instance methods, even when the owner of the object instance iz not the cusrently selected
applet In other words, unless specifically called out, the implementation shall not use resourees such as
wransient objects of CLEAR_ON_DESELECT type,

Exceptions thrown by AP| classas

Al exception objects thrown by the AP implementation shall be remporary JCRE Enwry Point Objects.
Temporary ICRE Entry Point Ohbjects cannot be stored in ¢lass variables, instance veriables or array
components. (Sec 6.2.1)

8.1

8.1.1

The APDU Class

The APDU class encapsulates scoess 1o the [SO 78164 based 1O acrass the eard serial line. The APDU Claas is
designed to be independent of the underlying VO transport projocol.

The JCRE may support Te0 or T trangpart protocols or both.

T=0 specifics for outgoing data transfers

For compatibility with fegacy CAD/terminals that do not support biock chained mechanizms the APDU Class
allows mode selection via the getOutgoingNaChaining method.

Copyright ® Dacember 14, 1838 Sun Microsystems, inc. 8-1

SUBSTITUTE SHEET (RULE 26)

WO 00745262 PCT/US00/01234
47/4

Jsva ™ Card ™ Runtime Environment (JCRE) 2.1 Specification
8.1.1.1 Constrained transfers with no chaining

When the m chaining mode of output transfer is requested by the applet by calling the
setOutgoingNoChaining method, the following protoco! sequence shall be followed,

Nota ~ when the no chatning mode is used, calls 1o the wait Extension method shall throw an
APDUExcept ion with ressen code ILLEGAL USE.

Notation
Le » CAD expected leagth.

Lr = Applet response iength set vis setOutgoingLength method

<JNS> = the protoco! byte equal to the incoming header INS byte, which indicates that all dats byt:s
will be ransferred next.

<~[NS> = the protocol byte that is the complement of the incoming hadw INS byte, which indicates
sbout | data byre being transferred next.

<SWI,SWZ> « the responte status bytes a3 in [SO7E16-4.

SO 7816-4 CASE 2

Les=Lr
1. The card sends Le byres of output data using the stmndard Tw0 <INS> or <~INS> grocedure
byte mechanism,

2. The card pends <SWI,SW2> completion status on completion of the Applet . process
method.
lr<te
1, The card sends <0x6i,Lr> completion status bytes
2. The CAD sends GET F.ESPONSE comround with Le = Ly,

3. The card sends Lr bytuofuulpmdmumgmcmdde-ocm&orﬁ-m&pmwdmc
byte mechanizm,

4, The card sends <SW,SW2> completion status on completion of the Applet .process
method,

Lt>le
I. The card sends Le bytes of cutput dats using the standerd Ted <INS> or <<[NS>
procedure byte mechanimu.

2. The card sends <Ox61 (Lr-Le)> completion stabus bytes
3. The CAD smds GET RESPONSE commsnd with new Le <= Ls.

4, The card sends (new) Le bytes of cutput dems using the sanderd T=0 <INS> or <~{NS>
procedore byte mechanism.

82 Copyright ® Dacember 14, 1998 Sun Microgystams, Ing

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 _ PCT/USD0/01234
4775

Java ™ Card ™ Runtime Envirenment (JCRE) 2.1 Specification

8. chutncpn2-4unaccsnrytounddaeremamingout;mdulbym(Lr)urequimd.
6. The card sends <SW1,SW2> completion ztatus o oumpletion of the Applet . process
method.
150 78164 CASE 4

In Case 4, Lo is determined sfier the following initial exchange:
I. The card sends <Ox61,Lr stanis bytes>
2. The CAD sends GET RESPONSE command with Le <= Ls.

The rest of the protocol sequence is identical to CASE 2 described above.

{f the applet aborts enrly and sends less than Le bytes, zeros may be sent inatead to fill out the length of the
transfer expected by the CAD,)

8.1.1.2 Regular Output transfers

When the no chaining mode of atput transfer is not requested by the spplet (thaf ia, the setOQurgoing
method 15 used), the following protocal sequence shall be folfowed:

Any ISO-7816-3/4 compliant T=0 protocol transfer sequence may be used.

Hola — The wai tExt enaion method may be invoked by the applet beeween successive ¢alls to gendBytes
or sendBytealong methods. The waltExtenaion method shall request an sdditionsl work waiting time
{180 7816-3) using the (x60 procedure byte. -

8.1.1.3 Additional T=0 requirements
At any tine, when the T=0D output transfer protocol is in use, and the APDU class is awaiting s GET
RESPONSE commsnd from the CAD in reaction to 8 response status of <0x61, xx> froem the card, if the CAD
sends in & different command, the sendnytes or the sandByteslong methods shall throw an
APDUExcept ion with reason code NO_T0_GETREEPONSE.
Calls to sendiytes o sendByt e plang methods from this point on shall repuit in an APDUException with
veason code TLLEGAL_USE. Ifan IS0Estcept ion is thrown by the applet after the KO_TC_GETRESPONSE

exception has been thrown, the JCRE shall discard the response status in its reason code. The JICRE shall restart
APDU processing with the newly rectived command end resume APDU dispatching.

8.1.2 T=1 specifics for outgoing data transfers

8.1.2.1 Constrained transfers with no chaining

When the 0o chalning mode of output transfer is requested by the applet by calling the
setCutgoingNeChaining methed, the following protocol sequence shall be folfowed:

Netation
Le = CAD expected lengih.

Ls = Applet rezponse length set vis astOutgoinglength method.

Copyright © December 14, 1838 Sun Microsystams, (nc. ()

SUBSTTTUTE SHEET (RULE 28)

WO 00/45262 : PCT/US00/01234

47/6

Java ™ Card ™ Runtime Enviromaert (JCRE) 2.1 Specification

The transpont protorol sequence shall not use block cheining, Specifically, the M-bit {more dats bit) shall not be
set in the PCH of the J-blocks during the transfers (150 7816-3). In other words, the eatire outguing daw (Le
bytes) shall be rrosferved in ane I-block.

(i the applet aborts early and sends less than Lr bytes, zeras shall be sent insead 1o Gl out the remaining
{ength of the block.)

Nota ~ When the no chaining mode i used, calls to the waitExtension method shall bwow an
APDUException with reason code ILLEGAL USE.

8.1.2.2 Reguiar Qutput transfers

When the no chaining mode of output transfer is not requested by the applet i.c the BetOutgoing method is
used, the following protoco! sequence shall be followed:

Any [S0-7816-3/4 compliant T=1 protoco) transfer sequence may be used.

Note — The waitExt ension method may be invoked by the spplet betwoen successive calls (o sendBytes
or sendiiytesLong methods. The wait Bxtens Lon method shall send an S-block command with WTX

mqumofl’NFmiu.whid:ixeqnﬂwlmno:nqumoﬂaddi&mﬂwkmhingmhmmﬁu IS0
7816-3).

8.2

The security and crypto packages

The getInstance method in the following classes return an implementstion instance in the context of the
calling applet of the requested algorithan:

javacard.asscurity.MessageDigest
javacard.security.Signature
javecard.securicy.RandomData
javacardx.crypto.Ciphar,

As implementation of the JCRE may implement 0 o more of the slgorithma listed in the APJ, When an
slgorithun that is noe implemented s vequested this method shall turow CryptoException with tesson
code NO_SUCH_ALGORITHM,

Implementations of the sbove classcs shall extend the corresponding base class and implminnllthealmmd
m.mm;nmhnmmmmmmmtimiummdnllbcpcrfurmedumeﬁmeof
hmumnudmwmm&nmyh&dmnﬁdmwhwmdmmehmhﬁmd
the epplet. .

Similarly, the buildiey method of the javacard.gecurity. keyBuildar clam retums an
implementation instance of the cequested Key type. The JCRE may implement 0 o more types of keys. When s
key type that is not implemented is requestad, the method shall throw s CryptoBxception with reason code
NO_SUCH_ALGORITHM.

&4 Copyright © Docember 14, 1998 Sun crosystems, inc,

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/US00/01234

4777

Java ™ Card ™ Runtume Environment (JCRE) 2.1 Specification

Implementations of key types shall implement the associated interface. All data allocation ssociated with the
key implementation instance shall be performed at the time of instance construction to ensure that any lack of
required resousces can be flagged early during the installation of the applet.

8.3 JCSystem Class

in fava Card 2.1, the getVersion method shall return (shart) 0x0201.

Copyright @ Decamber 14, 1098 Sun Microsystems, Inc. 85

SUBSTITUTE SHEET (RULE 28)

WO 00745262) PCT/US00/01234

9.

47/8

Jsva ™ Card ™ Runtime Environment (JCRE) 2,1 Specification

Virtual Machine Topics

Ths topice in this chapter detail virtual machine specifics.

9.1

Resource Failures

A leck of resources condition (such as heap space) which is recoverable shall result in a SystemException
with reason code RO_RESOURCE. The factory methods in JCSyaten used 10 areate transient srrays theow 8
SystemException with renson code NO_TRANSIENT_SFACE to indicste lack of wansient space.

Al other (non-recoverable) virtual machine errors such as stack overflow shall result in a virtual machine e,
These conditions shall cause the virual machine to hakt. When such a non-recoverable virmal maching error
oceurs, an implementation can eptionally require the card to be muted or blocked from further use.

Copyright © Decernber 14, 1998 Sun Microsystems, lne. 94

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCTIUSG0/01234

10.

47/9

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Applet Installer

Appict insialiation on smart cards using Java Card technology is a complex topic, The Java Card AP1 2.1 is
intended to give JCRE implementers as much feedom as poasibie in their implementations. However, some
basic common tpecifications are required in arder to allow Java Card applets to be installed without knowing
the implementation details of o particular installer.

This specificarion defines the concept of an Ingtaller and specifies minimal instaliation requirements in arder to
achieve interopersbility across & wide range of possible Installer implementstions.

The Applet Insaller is an optional part of the JCRE 2.1 Specification. That iz, an implementation of the JCRE
does not necessarily need to include 8 past-isnuance Instafler. However, if implemented, the installer is required
to support the behavier specified in section 9.1,

10.1

10.1.1

The Installer

‘The mechanismns necessary to install an applet on smast carde using Java Card technology are embodied in an
on-card component calied the fastaller.

To the CAD the instalier appears to be an applet. It has an AID, and it becomes the currently selected applet
when thiz ALD is successfully processed by a SELECT command. Once selected, the Installer behaves in much
the same way g2 any other applet

e |t receives alt APDUs just like any other selected applet.

e [tz design epecification prescribes the various kinds and formats of APDUs that it expects to receive atong
with the semantics of those commands under verious preconditions,

o [t processes and responds to all APDUs that it receives. Incorvect APDUs are responded to with an ercor
condition of some kind.

o When another spplet is selected (or when the card is reset or when power is removed from the card), the
{nsialier becomes deselected and remains suspended until the next ime that it is SELECTed

Installer Implementation

The innaller need not be implemented 22 an applet on the card. The requirement is only that the Installer
funetionality be SELECTable. The corollary to this requirement is that Installer component shall not be able to
be invoked when a non-Instsller applet is selected nor when no applet is selected.

Copyright & December 14, 1998 Sun Microsysterns, e, 10-1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 ' © PCT/US00/01234
: 47/10

Java ™ Cygrd ™ Runtime Environment (JCRE) 2. | Specification

Obviously. s JCRE implementer could choose to implement the Installer as un applet. I 3o, then the lnstaller
might be coded to extend the Applet class snd respond to |nvuahmx of the selsct, process, and
deselect methods,

Bui a JCRE tmplementer could also implement the Instalier in other ways, &3 fong &3 it provides the
SELECTabie behavior o the cutside world. In this case, the JCRE implementer bus the freedom to provide
some other mechanism by which APDUSs are delivered to the Insaller code module.

10.1.2 Installer AID

Because the insaller is SELECTable, it shall have an AID, JCRE implementers are free to chooze their own
AID by which their installer i3 selected. Multiple instaliers may be implemented.

10.1.3 Installer APDUs

The Java Card AP 2.1 does not specify any APDUs for the Instalier, JCRE \mplementm are estirely free o
choase their own APDU commands to direct their installer in its work.

ThemodeinﬂmmehmnllermmeqrdummWminxumhmmnmmngmd\aw in ader for
instailation to succeed, this CAD instatlation program shall be able to:

o Recognize the card.

e SELECT the Instlier oo the card.

« Drive the installstion process by sending the sppropriste APDUS to the card Installer, Thess APDU: will
contain:

¥ Authentication information, to ensure that the installation is authorized.

3 The spplet code to be loaded into the card’s memory.

» Linkage information to iink the applet code with code already on the card.

» lnstance initialization parsmeter data to be sent to the applet’s inscall method.

The Java Card APL 2.1 does not specify the detsils of the CAD insailation program nor the APDUs passed
between it and the Instatler,

10.1.4 Installer Behavior

JCRE implementers shall also define other behaviors of their Installer, including:

* Whether or not instslfation can bo aborted and how this is done.

o Vhat happens if sn exception, reset, or power foil occurs duwring nstllation,

¢ What happens if another applet is selected before the Installer is Enished with its vork.

The JCRE shall gusrantee that an appiet will nor be deemed successfully insttied if:

® (he applet’s invtall method tirows e exception before successful retwrn from the Applec. register
method. (Refer to paragraph 5.2.)

10-2 Copyright ® December 14, 1098 Sun Mitrosystems, Inc,

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 ' PCT/US00/01234

47/11

Java ™ Card ™ Runtime Environmenat (JCRE) 2.1 Specification

10.1.5 Installer Privileg&s

Although an Instalier may be implemented as an spplet, an Instalter will typically require access to features that
are not available to “other applets. For example, depending oo the JCRE implementer’s impiementation, the
Instalter will need to:

fead and write directly to memory, bypassing the object system and/or standard security.
Access objects owned by other applets or by the JCRE.

invoke noo-entry point methods of the JCRE.

Be sbie to invoke the inatall method of 8 newly installed applet.

e & » B

Again, it i8 up to each JCRE implementer to determine the Installer implementation and supply such features in
their JCRE implementations as necessary to support their insailer, JCRE implementers are also responsible for
the security of such features, g0 thet they are not available to normal applets.

10.2

10.2.1

The Newly Installed Applet

There is o single interface between the Installer and the applet that is being instalied. After the Lastailer has
correctly prepared the applet for execution (performed stepe such as foading and linking), the installer shail
{nvoke the applet's install method This method is defined in the Applet clazs.

The precise mechanism by which an applet’s 4nscel) method is invoked from the instalier i a2 JCRE
implementer-defined Implementation desail, However, there thall be a context switch 9o that any context-
related aperstions performe by the inscall method (such as aresting new objects) are done in the context of
the new applct and not in the context of the Installer. The Instalier shall siso ensure that armay objects ereated
during spplet class initiatization (<clinit>) methods are also owned by e cniext of the new applet

The installation of an applet is doemed complete If all steps are completed without fatiure or an exception being
thrown, up to and including successful renon from executing the Applet . vegister method. At that point, the
instailed applet will be selectable.

The maximum size of the paremetcr data is 32 bytes. And for senurity ressons, the barray pasameter ia zeroed
after the return (just a8 the APDU buffer is zevoed on retumn from 2n spplet’s process method)

Installation Parameters

Crther than the masimum gize of 32 bytes, the fava Card APL 2.1 doss not specify anything sbout the contents
of the installstion parercter byte array segment. This is fislly defined by the applet designer and can be in &ny
format desired. In addition, these installation parameters are intended to be opaque to the Installer.

JCRE implementers should dexign their Instaliess so that it is possible for an installation program nemning ina
CAD to apecify an arbitrary byte armrey o be delivered to the lnsialler, The Insaller simply forwards this byte
areay to the target applet's install method in the bArray parameter. A typical implementation might define o
JCRE implementer-proprietary APDU commond that bas the semantica “call the applet's instell method
pessing the contents of the accompanying byte errey.”

Copyright © Decamber 14, 1888 Sun Microsystams, ine. 10-3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 . PCT/US00/01234
47/12

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

11. API Constants

Soxme of the AP classes don't have values speeified for their constanis in the Java Card AP 2.1 Reference. i
constant vaiues sre not specified consistently by implementers of this JCRE 2.1 Specification, indusry-wide
inteoperability is tmpossible. This chapter provides the required values for mm that are not specified in
the Java Card AP/ 2.1 Reference,

Class javacand framewor . APDU

public static fimsl byte PROTOCOL_T0 ~ 0
public static final byte PROTOCOL_TI « 1

Class javecard framework APDUExcaption

public static final echort ILLEGAL USE » 1)

public static final short BUFPFER_BOURD3 « 2/
public static fioal abort BAD_LRNGTH e« 3;

public static fimal ahort IO _ERROR = 4;

public static £inal short WO_TO_GCETRESPONEE « OxAR

intarface javacard framework ISO7816

public final static short §W_NEO_ERROR = {(short)oxd000;
public final static shozt sW BYTES REMAIHIRNG 00 = Ox$100;
public finsl atatic short 5W mm LENGTH « 0x6700/

public stacic final shoxt &W smrn' STATUS_NOT_SATISFIED « 0x6981,
public final static shoxt GW_PILB_ IBVRALID o O0x6€983;

public £insl static short W mu IHVALID o 0x6984:

public £inal etatic short §W DI TIONS BOUT_SATISFIED « Ox6985;
public final static eshoxt §W_COMMAND | woF n.mwm w 05986,
public £ins) static shozt 5W_APPLET | BELECT, ' FAILED « Ox6595;
public final static abort WRORG,_} BATA = Ox6AB0;

public final sctatic sbort BW_PONC | m SUPPORTED = Ox6ABL
public finsl etatic shorc SW m m POUND « OXGAB2)
public final static short &9 RECIRD m'r PFOUND » OXEAR3;
public finsl etatic choxt 5W xumaucr Pipz - OREADS ;
public final static ehozt SW_WRONG | P1PT «© 0x6BOC,

public finsl static short W wmcr LEXGTH 00 » ORGCO0;
public finsl static shoxrt SW_INS m SUPPORTED = 0x6D00;
public final gtatic shoxt 5W CLA | ROT_! ' SUPPORTED - 0u6EGOD;
public £inal atatic short 5w OOM « OX6FD0;

public static final shore 5W _FILE VULL « OxG6A84,

public final static byte OPPSET QA = 0)

public final atatic byte OFFEET IEE = 1,

public final static byte OVPSEY Pl = 2,

public final gtatic byte QFPSET_ P2 - 3;

lllll'(llglltllllll

Copyright © Daecamber 14, 1988 Sun Mitrosystams, the, 1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 . PCT/US00/01234
47/13

lava ™ Cped ™ Runtime Environment (JCRE) 2.1 Specification

public final static byte OFFSET IC « 44

public £inml static byte QOPFSET_CDATAs 5/

public £inal static byte CLA_I1S07816 » Ox00;

public £ipal static byte INS SELECT =~ (byte} Omhd; -

public finsl scatic byte INS EXTERNAL AUTHENTICATE = (byte) Ox82;

Class javecerd.framework. JCSystem

pubtic static final byte NOT A TRANSIENT OBJECT = §;
public static final byte CLEAR_ON_RESET = 1,
public statie final byto CLEAR OH DHREELECT - 2:

Class javacard. framework PINException
public evatic final sbort ILLEGAL VALUB « 1,

Class |avacard.framework.SystemException

publie scatic finel ahort ILLEGAL VALUR = 1;
public static final short NO TRANSIENT SPACE = 2
public static fiaml short ILLEGAL TRANSXENT » 3,
publiec atatic finsl shoxt ILLEGAL AID = 4;
public scatic finel short NO_RESCOURCR e §;

Class javacard.security. CryptoException

public static final short ILLEGAL VALUE = 1;
public static finsl short UNINITIALIZED KEY = 2;
public static final short NQO_SUCH ALOCORITHM = 3,
public setatic £ina) short INVALID INIT « 4;
public static final short ILLBGAL USE e 5:

Class javacard.securtty KoyBulider

public stacic final byve TYPS DES TRANBIENT RESRT - 1,
public ptetic final byte TYPE_DEA TRANSIENT DESELECT « 2.
publiic static final byte TYPE DBS = 3

publie static final byte TYPE RSA_FUBLIC = 4;

public static final byte TYPE _RSA_PRIVATE « 35

public static f£inal byte TYPE REA _CRT PRIVAIE = 6;
public atatic final byte TYPE DSA PUBLIC » 7;

public static final byte TYPR_DSA PRIVATE = 8/

public static final ahort LENOTH DES » 64,

public static final ahore LENOTH DES) JREY « 118,
public etatic fina)l short LEWGTH DRSI IKEY » 122,
public static fina) short LEMNITH RSR 512 =« 512,
public static final shore LENUTH RSA 762 = 768,
public static f£insl short LEWGTH _RSA_1034 = 1024,
public etatic final short LENGTH_REA_2048 « 2048,
public stetic fina)l ghert LERGTH_DSA _S1i = 512,
public seatic £insl shoxt LENUTH _DSA_768 = 768

public static £imal shore LENOTH_DSA 1024 = 1024,

Class javacard gecurity. MeszagaDigest

public static fina) byte ALG SHA - 1
public setatic finml byte ALG _KDS = 2 .
public seatic final byte ALG RIPEMDISO = 3

Class javacard security RandomData

public static final byte ALG PSEUDC RANDOM o 1,
public static final byte ALG_SECURE RANDOM - 2
Class javacard. security. Signature

public static finsl byte ALG_DES MACE WOPAD = 1,
public seatic final byte ALG_DES MACG_BOPAD « 1,
public static final byte ALG_DRS MAC4 I503787 ML ¢ 3

2 Copyright © Dacembaer 14, 1998 Sun Microsystems, Inc,

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

public
public
publie
public
public
public
public
public
public
public
public
public
publie

Claas javecardx.cryplo.Clphat

public
public
public
public
public
public
public
public
public
public
public
publie

PCTI/US00/01234
47/14 -

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

static
static
seatic
static
static
static
static
static
static
static
static
static
static

static
static
static
stacic
static
static
atacic
static
static
static
static
static

final byte
final byts
£ine) byte
final byte

final byte
finel byte

final byte
tinsl byte
final byte
final byte
final byte
final byta
final byte
final byte
finnl byte
final byte
final byte
finnl byte

ALG_DES_MACE_IS09797 Ki = 4y
AL2 DES _MACY ISQ9797 M2 = 5;
_DES _MACS ISO9737 2 = 6;
_DBS_MAC4_FRCSS » 7,
ALG _DES _MACHE _PKCSS » 8;

ALG_RSA_SHA_TS03796 » 9,
RSA_SHA_PRCB)L « 10;

- !

LT K s 1l 08)

i

lEIE
=
=8
gy
SR
gk
o]
8.
@
-3 -
N4
o™
[}
:
o

MODE_BIGN & 1;
MODE_VERIFY o 2,

DES_CBC_NOPAD » 1,

CBC_IS09797_ML = 2

CBC_1509797 M2 » 3,

m —
DES_CBC_PRCBS « 4
BS

ECB_NOPAD = §;

'

DES_BCB_IS09797_ ML = &,
DES_BCB_ISO9797 M2 = 7;

BC PXCSS » 0

_RSA_ISOI4 868 = §;
RLG_RSA_PRCBL = 10;
#ODE_DECRYPT = 1;

MODE_ENCRYPT =« 2,

IE:

EEEEE

B

EEE
IE1

3

Copyright © Docember 14, 1998 Sun Microsystams, inc.

SUBSTITUTE SHEET (RULE 25)

WO 00/45262 _ v PCT/US00/01234
47/15

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Glossary

AID is an aceonym for Application [Dentifier a3 defined in [SO 7816-5.
APDU is an acranym for Application Protocol Dats Unh s defined in 150 78164,

APt is an acvonym for Application Programming Interface. The APl defines canmg conventions by which an
application program acceases the operaring system and other services.

Apptet within the context of this document means 8 Java Card Applet, which is the basic unit of selection,
context, finctionality, and security in Java Card technology.

Applet developer refers to & person creating s Java Card applet using the Java Card technology specifications.
Appiet firewall is the mechanism bn the Java Card technotogy by which the VM prevents an applet from
muking unsuthorized accesses to objects owned by ather applet contexts or the JCRE context, snd reports or
otherwise addresses the violation.

Atamic aperation i3 an operation that either complees in its entirety (if the operation succeeds) or no part of
the nperation completes st all (if the opesation fails).

Atomielty refers to whether n particular operation is atomic of not and is necessary for praper data recovery in
cases in which power is lost or the card Is unexpectedly removed from the CAD.

ATR is en scronym for Answer to Reset. An ATR i 8 string of bytes sent by the Java Card after a reset
condition.

CAD is an acronym for Card Acceptance Device. The CAD i the device in which the eard is inserted.
Caut is the explicit conversion from eae data type to enothey.

€JCH Is the test guite to verify the complisace of the implamentation of the Java Card Technology
specifications. The ¢JCK uses the JavaTest tool to nm the tes guite,

Class is the prototype for an object in an ohjest-oriented lsnguage. A claze may alzo be considered a set of
objocts that shere 8 common structure and behavior. The structire of & class is determined by the class variables
that represent the nste of an objent of that class and the behavior is given by a set of methods sssociated with
the class.

Classes are relsted in 8 class hierarchy. One cisas may be 8 epocialization (8 subclass) of snother (its
superclass), it may have reference to ether classes, and it may use other classes In 8 client-server relationship.

Context (See Applet execution context.)

Currently sctive context. The JCRE kecps track of the currently sctive Java Card applet context. When a
virtual method is invaked on an ohject, snd & context switch is required and permiteed, the currently active

Copyright © Dacermnber 14, 1938 Sun Microsystams, Inc. 1

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/US00/01234
47716

Java ™ Card ™ Runtune Environment (JCRE) 2.1 Specification

context is changed to comespond ta the spplet context that owns the object. When that method resurns, the
previous context is restored. Invocations of static methods have no effect on the currently sctive context, The

curtently active context and sharing status of sn object together desermine if access Lo an object is permbssible.

Currently selected applet The JCRE keeps track of the cwrrently selected lava Card appler. Upon receiving 8
SELECT command with this spple’s AlD, the JCRE makes this applet the currently selected applet. The SCRE
sends all APDU commands to the currently selected applet.

EEPROM is en scronym for Electrically Erasable, Programmsble Read Only Memory.

Firewall (sec Applet Firewall).

Framework is the set of clazses that implement the API, This includes core and exiension packages.
Responsibilities include dispatching of APDUs, spplet selection, mansging stomicity, snd insalling applets.

Garbage collection is the process by which dynamically sliocated storsge is sutamatically reclaimed dumg
the execution of & program.

instance varfables, aizo known gs fields, represent s portion of an ohject’s internal smto. Each cbject has ita
own set of instence variables. Objects of the geme class will have the same instance vumblen. but each object
can have different values,

Instantiation, in object-criented progranuning, means to produce & particular objeu from its class template.
This involves allocation of 3 dats strucume with the types specified by the template, rnd initislization of
instence varisbles with cither default values or those provided by the chase’s constuctor function,

JAR is en scronym for Jave Archive. JAR is 8 platform-independent file format that combines many files into
oae.

Java Card Runtime Envircoment (JCRE) consists of the Java Card Virmal Machine, the framework, snd the
aszocisted native methods.

JCLIRI is an acyonym for the Jave Card 2.} Reference implementation.

JCRE implementer refers to 8 person creating & vendor-specific implementation using the Java Card APL
JCVM is an acronym for the Jave Card Visual Machine. The JCVM is the foundation of the OP card
srehitocure. The JCVM exerutes byt code snd manages classcs snd objects. [t enforees sepamtion between
spplications (fuewslis) and enables socure dats sharing.

ml(ismmyrnforln\h DcvclupmcuthLTbemKu-SmMmyrms. Inc. product that provides e
environment required for programming in Jnvu The JOK is availeble for 8 variety of platforms, but most
notably Sun Solaris and Microsoft Windows®.

Method is the name given to 8 procedure of routine, aesociated with one & more classes, inolijea-aimud
languages.

Namespace is s sst of names in which all axmes are unique,

Object-Orfented is & programming methodology based on the concept of aa obfect, which i3 & dats structure
encapzulated with & 5ot of routines, called merhods, which opemie on the data,

Objects, in object-oriented programming, are unique instances of & dats swucture defined secording to the
template provided by its class. Each object has its own values for the varisbles belonging to its class and can
respond to the messeges (medhods) defined by its class.

2 Copyright © Decamber 14, 1988 Sun Migrosystams, inc,

SUBSTITUTE SHEET (RULE 28B)

WO 00/45262 PCT/US00/01234
47/17
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification
Packags is a namespace within the Java programming langusge snd cen bave classes and interfuces, A package
is the smallest unit within the Java progrmuming language.
Persisteat object Persistent objects and their values persist from one CAD session to the next, indefinitely.
Objects are persistent by defsult. Persistent cbject values are updated atomically using transactions. The term
persistent does not mean there {3 an object-oriented database on the card or that objects are
seriatized/deserialized, just that the objects are not lost when the card loges power.

Sharesbie lnterface Defines o set of shered interface methods. These interface methods cag be invoked from
one applet context when the object implementing them is owned by another applet context.

Shareable interface objeet (SIO) An object that implements the sharesble interface.

Transaction is an stomic operation in which the developer defines the extent of the operation by indieating in
the program code the beginning and end of the transaction.

Translent object. The values of transient ohjects do not persist from one CAD gession to the next, and sre reset
10 & default gmate at gpecified intervals, Updates (o the values of aensient objects are aot atomic and are aot
affected by transactioes,

Copyright © Decarnber 14, 1998 Sun Microsystems, ine 3

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 ' PCTAUS00/01234
47/18

1/5/99 12:49 PM Havnor: Stuff JCRE D2 i4DEC98: READ-ME-JCREZ!1-DF2.txt Page i
Date: 16 December 1998
Dear Java Card Licensee,

JCRE21-DF2-14DEC98.zip contains a second draft of the Java Card 2.1
Runtime Environment specification, dated December 14, 1998, for
Licensee review and comment. We have worked incorporate and clarify
the document based upon the review feedback we've received to date.

Complete contenis of the zip archive are as follows:

READ-ME-~JCRE2I-DF2.wt - This READ ME text file
JCRE21-DF2.pdf ~ "Java Card Runtime Environment (JCRE)
2.1 Specification” in PDF format
JCRE21-DF2-changebar.pdf ~ The revised document with change bars
) from previous version for case of review.

Summary of changes:
I. This is now a drafi 2 release and will be published on the public web site shortly.

2, New description of temporary JCRE Entry Point Objects has been introduced for purposes
of restricting unauthorized access.
Firewall chapter 6.2.1.

3. Global arrays now have added security related restrictions similar to temporary JCRE
Entry Point objects, Firewall chapter
6.2.2. \

4. Detailed descriptions of the bytecodes with respect to storing restrictions for temporary
JCRE Entry Point Objects and
Global arrays added. Chapter 6.2.8, :

5. General statement sbout JCRE owned exception objects added in chapter 8.

6. Corrected description of Virtual machine resource faltures in transient factory methods.
Chapter 9.1,

The "Java Card Runtime Environment 2.1 Specification” specifics the minimum behavior and runtime
environment for complete Java Card 2.1 implementation, as referved to by the Java Card APT 2.1 and Java Card
2.1 Virtual Machine Specification documents, This specification is required to ensure compatible opecation of

Java Card applets. The purpose of this specification document is to bring all the JCRE clements together in a
concise manner as part of the Java Card 2.1 specification suite.

Please send review comments o <javacem-javacard@sun.com> or to my address as below. On behalf of the
Java Card team, | look forward to hearing from youw.

Best,
Godfrey DiGiorgi

Godfrey DiGiorgi - godfrey.digiorgi@eng.sun.com
OEM Licensee Engineering
Sun Microsystems / Java Software

+1 408 343-1506 - FAX +1 408 517-5460

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234
48

What is claimed is:

1. A small footprint device comprising:

a. at least one processing element;

b. memory,

c. a context barrier using said memory for isolating program modules from one
another; and

d. a global data structure for permitting one program module to access

information from another program module across said context barrier.

2. The small footprint device of claim 1 in which said context barrier allocates

3. The small footprint device of claim 2 in which at least two program modules can
access said global data structure even though they are located in different respective name

spaces.

4. The small footprint device of claim 1 in which said context barrier allocates

separate memory spaces for each program module.

5. The small footprint device of claim 4 in which at least two program medules can
access said global data structure even though they are located in different respective

memory Spaces.

6. The small footprint device of claim 1 in which said context barrier enforces

security checks on at least one of a principal, an object and an action.

7. The small footprint device of claim 6 in which at least one security check is

based on partial name agreement between a principal and an object.

8. The small footprint device of claim 7 in which at least one program can access

said global data structure without said at least one security check.

9. The small footprint device of claim 6 in which at least one security check is

based on memory space agreement between a principal and an object.

WO 00/45262) PCT/US00/01234
49

10. The small footprint device of claim 9 in which at least one program cam access

a gldbal data structure without said at least one security check.

11. A method of operating a small footprint device, comprising the step of
separating program modules using a context barrier and permitting access to information
across the context barrier using a global data structure.

12. The method of claim 11 in which the context barrier will not permit a principal
to perform an action on an object unless both principal and object are part of the same

context unless the request is for access to a global data structure. .

13. A method of permitting access to information on a small footprint device from a
first program module to a second program module separated by a context barrier,
comprising the step of creating a global data structure which may be accessed by at least
two program modules.

14. A method of communicating across a context barrier separating program
modules on a small footprint device, comprising the steps of:

a. creating a global data structure;

b. permitting at least one pmgram module to write mformauon to said global data
structure; and

c. having at least one other program module read information from said global data

structure.

15. A computer program product, comprising:

a. a memory medium; and)

b. a computer controlling element comprising instructions for implementing a
context barrier on a small footprint device and for bypassing said context barrier using a

global data structure.

16. The computer program product of claim 15 in which said medium is a carrier

wave,

17. A computer program product, comprising:

a. a memory medium; and

WO 00/45262 , PCT/US00/01234
50

b. a computer controlling element comprising instructions for separating a plurality
of programs on a small footprint device by running them in respective contexts and for
permitting one program to access information from another program by way of a global
data structure.

18. The computer program product of claim 17 in which said medium is a carrier

wave.

19. A carrier wave carrying instructions for implementing a global data structure

for bypassing a context barrier on a small footprint device over 2 communications link.

20. A carricr wave carrying instructions over a communications link for separating
a plurality of programs on a small footprint device by running them in respective contexts
and for permitting one program to access information from another program using at least

one global data structure.

91. A method of transmitting code over a network, comprising the step of
transmitting a block of code from a sexver, said block of code comprising instructions for
implementing a global data structure for bypassing a context barrier on a small footprint

device over a comrmunications link.

WO 00/45262) PCT/US00/01234

118

120
(.

FIG. 1

SUBSTITUTE SHEET (RULE 285)

WO 00745162 ‘ PCTAIS00/01234

2/18
210
4
SERVER
200
120
4
CAD EQUIPPED
NETWORK DEVICE

FIG. 2

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 _ PCT/USO0/01234

318
.Small-Footprint Device
1O (e.g., serial porf)}~ 330
Primary storage
310 Y
ats [
-/ - 340
ROM \
- 300
¢ * Processor(s)
RAM
N\ 316 I
Secondary Storage {™ ‘320
(e.g., EEPROM)
FIG. 3
(PRIOR ART)

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

4/18
7 400
Physical Device
-~ 410
Machine (virtual or physical)
f—420

EXECUTION CONTEXT
430

Object
access

~ 440

OBJECT
Object
access /

OBJECT

Object
access

OBJECT

FIG. 4

(PRIOR ART)

SUBSTITUTE SHEET (RULE 28)

WO 00/45262

PCT/USD0/MO1234
5/18
520
510 Ve
OBJECT 1
/ (DATA)
N
ACTION ®
/500
PRINCIPAL ACTION 520
(ENTITY)
OBJECT 2
65 (DATA)
ACTION :
® / 530
OBJECT N
(ENTITY)
FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

6/18

PCT/USC0/01234

Ve 400

Physical Device /410

Machine (virtual or physical)

EXECUTION CONTEXT 1

430 — 420
Object
access
0BJECT
- 630
Object
access 635

440

EXECUTION

}6/636 £ 800
CONTEXT 2
- 640 |-
Object BJCT
CCESS)
OBJECT

620

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 ‘ PCT/USOU/0TE4

7118

/700

RUNTIME ENVIRONMENT

/ 7777777
/ REWAL /////////// /// /
JI2IVI Vi ;
/| CONTEXT 0 || CONTEXT 1 [/| CONTEXT 2}/
/] (SUPER | 770 g w0 b
A coNTEXT) 14 & U P
4 % 4 /)
| ™ 2 /
4 / /
7T, T T T T T T T T
VIRTUAL MACHINE
720
lNTERgRRETER L7
NATIVE IMPLEMENTATION
RUNTIME SYSTEM L 740
OBJECT ./750
SYSTEM
_760
OPERATING SYSTEM
FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 ' PCT/US00/01234

8/18

PRINCIPAL INVOKES ACTION ON 0BJECT 800

840
4

810
z
IS OBJECT WITHIN CONTEXT DISALLOW
OF PRINCIPAL? (N1 ~AcTION

T

PERMIT ACTION |~ 830

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

9/18

PCT/US00/01234

Physical Device

Machine (virtual

or physical)

EXECUTION CONTEXT 1

Object

access

00
9

9
Object
access 05
S
Object
access

440

OBJECT

630

- 420

635

636

/ 600

/\<920
@,

EXECUTIONJCONTEXT 2

\

OBJECT

640
‘ OBJECT l

910

- 620

FIG. 9

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 ' PCT/US00/61234

10/18
o~ 400

Physical Device

~ 410

Machine (virtual or physical)

EXECUTION CONTEXT 1

~— 1030
Object
access 1035
10007 |
L1070 (500
) —
EXECUTION CONTEXT 2
/ L
1010 OBJECT 1050

1095 1099
o OBJECT

Object
access
/L(1080 , ¢ 600

EXECUTION|CONTEXT 3

4 1060

1
1020
OBJECT

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 ' PCT/USH0/01234

11/18

, 1100

In execution context 2,
create Object and
designate as shared
(e.g., entry point)

{110

In execution context 1
(Principal), obtain a
reference to Object

1120

A

Principal invokes
Action on Object .

FIG. 11

SUBSTTTUTE SHEET (RULE 265)

WO 00/45262

PCT/US00/01234
12/18
/400
Physical Device
L~ 410
Machine (virtual or physical)
SUPERCONTEXT /760
1210
ENTRY POINT
OBJECT
&
600
f\(1220 /
L/
770
1200
TN ~1205
OBJECT
ACCESS
CONTEXT 1
FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 00/45262) PCTIUS00/01234

13118

400
Physical Device ’
410
Machine (Virtual or Physical) '
SUPERCONTEXT 760
1200
GLOBAL DATA
STRUCTURE
b
122001, 1270 (600
g \ g
770 1208 - 1255 780
1210 1250
OBJECT OBJECT
ACCESS : ACCESS
CONTEXT 1 CONTEXT 2
FIG. 13

SUBSTITUTE SHEET (RULE 28)

WO 00/45262

PCT/US00/01234

14/18

400

Physical Device
: 410

Machine (Virtual or Physical)

SUPERCONTEXT 760

1200 1250

OBJECT
ACCESS

1220 1270 ,500

1205%/ 1255
770~ 780

1210 1260
OBJECT | OBJECT |

CONTEXT 1 CONTEXT 2

FIG. 14

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 . PCT/US00/01234

15/18

400
Physical Device
410
Machine (Virlual or Physical)
L~ 600
770 780
z {
1200
¥ 1205 | 1220 SHAREABLE
OBJECT /a8 INTERFACE
ACCESS Y OBJECT
 CONTEXT 1 CONTEXT 2
FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 008/45262 PCT/US00/01234

16/18

- 1600

PRINCIPAL INVOKES ACTION ON OBJECT

1610

IS OBJECT
WITHIN CONTEXT OF
PRINCIPAL?

IS ACTION
BY PRINCIPAL
PERMITTED ON

_ OBJECT _-

1640
A Y -~ 1630 v /
PERMIT ACTION D;\Sé}l-'lb%w

FIG.16

SUBSTITUTE SHEET (RULE 25)

WO 00/45262

PCT/US00/01234

17118

PRINCIPAL INVOKES 1600
ACTION ON OBJECT [

IS OBJECT
PRINCIPAL?

WITHIN CONTEXT OF

1610

IS ACTION BY
PERMITTED

ON OBJECT?;

LV PN
Tes

Yes

J 3

Yes

1630
PERMIT ACTION

/’\‘<

< Test 1: Pass?

1620
r .
PRINCIPAL
1621
Note: Test can
~ be done by VM
1622 alone or by VM
plus Object
1623

L 4

~ 1640

DISALLOW ACTION

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 . PCT/US00/01234

18/18

1800

call test)
1629
.z’

o o G (S G, T SO NG s GO | GO O A OGS K e MEE iy DAL DTN S G GO Qe DTN wmomm oEwn e Kk

r

Test t-N for P invokes
AonQO

" VM checks if O is a
shared object

VM invokes method A |- 1820
of abjects O

1830

Method A of object O
checks if P is authorized

1840

1850
FAIL

L-—-.-—..—.-—n—_- [RSPV e ——— SRS e g e

FIG. 18

..1
|
!
|
|
|
|
|
!
!
!
|
i
|
l
!
|
|
I
l
!
|
!
[
|
|
|
l
!
!
|
|
[
|
!
|
|
|
{
|
|

!
{
!
!
|
l
[
l
{
!
|
|
|
!
|
|
|
|
|
|
|
!
|
|
!
|
I
|
!
|
!
!
]
|
!
|
|
!
[
(

SUBSTITUTE SHEET (RULE 28)

	2007-12-22 Foreign Reference

